
M6x/cM6x Development Package
Manual
The M6x/cM6X Development Package Manual was prepared by the technical staff of Innovative
Integration, February 2000.

For further assistance contact:

Innovative Integration
5785 Lindero Canyon Road
Westlake Village, California 91362

PH:(818) 865-6150
FAX:(818) 879-1770
email:techsprt@innovative-dsp.com
Website:www.innovative-dsp.com

This document is copyright 1997 by Innovative Integration. All rights are reserved.

VSS\M62\documents\Hw-Sw Manual\M62manual.book
#51070 rev – 1.01

2 Development Package Manual

CHAPTER 1 Introduction . 11
A Note about this Manual . 12

CHAPTER 2 Installation . 13
Host Hardware Requirements . 13
Software Installation . 14

Begin Installation . 14
Installation Instructions . 15
JTAG Debugger Driver Installation . 22
Code Composer Studio Installation . 29
Hasp Key Installation . 31
End Of Installation . 31

Hardware Installation . 32
JTAG Emulator Hardware Installation . 32
DSP Board Installation . 34

Testing the Development Package Installation . 35
Configuring the Applets within the Development Package 35
Running the "JTAG Diagnostic" Utility . 36
Running an Example Program using TERMINAL . 37
Running the "Scope" . 39
Testing the Code Composer Debugger . 39

Troubleshooting Installation Problems . 41
Most Commonly Asked Questions . 41
Code Composer Studio Troubleshooting. 45
Verify Environment Variables . 48

Multiple Board Support . 49
Uninstall Process. 51

Windows 95/Windows 98 Uninstallation. 51
Windows NT Uninstallation . 54

CHAPTER 3 Integrated Development Environment 55
The Texas Instruments C Compiler Toolset . 55

C Compiler Toolset Usage . 56

Code Composer Studio . 56
Editor. 56
Debugger . 56

CHAPTER 4 Support Applets. 57
The Terminal Emulator . 57
The COFF File Downloader . 64
The COFF File Dump Utility . 66
M62 Development Package Manual 3

4

CHAPTER 5 Developing Target Code . 69
Introduction . 69

Components of Target Code (.c, .asm, .cmd). 70

Edit-Compile-Test Cycle using Code Composer Studio 70
A Simple Code Composer Studio Project . 70

Build Options (M62, Q62, SBC62 Boards) . 72
Build Options (M67, Q67, SBC67 Boards) . 75
Automatic makefile creation . 77
Rebuilding a Project . 77
Running the Target Executable . 77

Anatomy of a Target Program . 78
Use of Library Code . 80
Compiling/Assembling/Linking Outside Code Composer Studio 80

The Next Step: Developing Custom Code . 81

CHAPTER 6 Developing Host Code . 83
Dynamic Link Library . 83

Sample Host Programs . 84
The XRPT Example . 87

CHAPTER 7 Creating Target Software . 89
C Code Development . 89

C Compiler . 89
C Library Reference . 90
M62 Zuma Toolset Libraries . 90
M62 Hardware Interaction . 93
Digital Input/Output . 94
Timers . 96

Example Target Programs for the M62 . 100
HELLO . 100
TEST . 100

CHAPTER 8 Target DSP Peripheral Libraries 103

CHAPTER 9 Host DLL Reference. 111

CHAPTER 10 DOS Environment Requirements 115
M62 Development Package Manual

CHAPTER 11 M62/cM62 Hardware . 117
M62/cM62 Hardware Functions . 117
Memory Map . 118
M62 Hardware Initialization Requirements . 119
External Memory . 120
M62 OMNIBUS . 120

M62 OMNIBUS Memory Mapping . 121
OMNIBUS Power . 122

FIFOPort I/O Expansion . 123
Transmitting and Receiving FIFOPort Data. 124
Monitoring FIFO Status . 124
FIFOPort Reset . 126
FIFOPort Enable. 126
Controlling the FIFOPort Programmable Almost-full Flag 126
Timer I/O and the FIFOPort . 127
Designing External Hardware for use with the FIFOPort 127
FIFOPort Timing. 128

Serial Ports . 129
Timers . 129

On-chip Timers . 130
16-bit Timers . 130
AD9850 Direct Digital Synthesizer . 131

Digital I/O . 132
Digital I/O Timing . 133

External Mux Control . 133
Interrupts . 134
JTAG Test Bus . 136
M62 PCI Bus Features . 136

PCI Bus I/O and Memory Map . 136
M62 Bootstrapping . 138

CHAPTER 12 Appendices . 139
Board Layout . 139
Connector pinouts . 141

JP17, JP18, JP21, JP22, P1, P2 - OMNIBUS I/O Connectors (M62 only) 141
JP17, JP18, JP21, JP22, JP32, JP33 - OMNIBUS I/O Connectors (cM62 only)
142
JP19, 20, 23, 24, 34, 35 - OMNIBUS Bus Connectors 143
JP14 – Digital I/O Connector . 145
JP31 – Miscellaneous Digital I/O Connector . 146
JP15, JP16 – Processor Serial Port Connectors. 146
JP11 – JTAG Debugger Connector . 147
JP30 – FIFOPort Connector. 148

TMS320C6201 Limitations and Errata. 149
Processor Speed Limitations and External Memory 149
Texas Instruments Device Errata . 150
M62 Development Package Manual 5

6
 M62 Development Package Manual

TABLE 1. PCI Debugger Package Contents . 22

TABLE 2. ISA Debugger Package Contents . 22

TABLE 3. Pod-Based Emulator Card I/O Address Switch Settings . 33

TABLE 4. Host Support Applications . 35

TABLE 5. Zuma Toolset Source Directories . 90

TABLE 6. Zuma Toolset Support Subdirectories . 91

TABLE 7. Texas Instruments Standard Library Functions . 93

TABLE 8. M62 External Peripheral Memory Map. 94

TABLE 9. Digital I/O Access Memory Location . 95

TABLE 10. Table 17: Digital I/O Direction Configuration . 95

TABLE 11. Digital I/O Latch Configuration . 96

TABLE 12. Digital I/O Library Functions . 96

TABLE 13. C Language Timer Functions . 97

TABLE 14. STDIO Driver Functions . 98

TABLE 15. Generic DLL Function List . 111

TABLE 16. Required disk directory structure for II development tools. 116

TABLE 17. M62 External Memory Map . 119

TABLE 18. M62 Bus Control Register Initialization Values . 120

TABLE 19. M62 I/O Bus Memory Mapping . 121

TABLE 20. I/O Bus Power Ratings . 122

TABLE 21. Receive FIFOPort Level Status Register Definition . 125

TABLE 22. Transmit FIFOPort Level Status Register Definition . 125

TABLE 23. FIFOPort Timing Parameters . 128

TABLE 24. External Timer Control Registers . 130

TABLE 25. AD9850 Control Registers . 131

TABLE 26. Digital I/O Control Registers . 132

TABLE 27. Digital I/O Port Timing Parameters . 133

TABLE 28. TERM Function Memory Map. 134

TABLE 29. External Interrupt Input Control Registers . 135

TABLE 30. Interrupt Source 4 and 5 Select Register Values. 135

TABLE 31. Interrupt Source 6 and 7 Select Register Values. 135

TABLE 32. HPI Port PCI Bus Mapping . 137

TABLE 33. OMNIBUS I/O Connector Pinouts . 141

TABLE 34. OMNIBUS I/O Connector Pinouts . 142

TABLE 35. I/O Module Bus Connectors . 144

TABLE 36. I/O Module Bus Connectors . 145

TABLE 37. Digital I/O Connector . 145

TABLE 38. Miscellaneous Digital I/O Connector . 146

TABLE 39. Processor Serial Port Connector . 147

TABLE 40. JTAG Debugger Connector . 147

TABLE 41. FIFOPort Connector . 148
M62 Development Package Manual 7

8
 M62 Development Package Manual

FIGURE 1. Pod Based Emulator Switch/Jumper Positions . 33

FIGURE 2. Hasp Key . 34

FIGURE 3. .INI File Parameters . 36

FIGURE 4. Terminal Emulator Applet . 58

FIGURE 5. Terminal Emulator File Menu . 58

FIGURE 6. Diagnostic Received when Target DSP is Halted. . 59

FIGURE 7. Terminal Emulator Plot Menu Dialog Box. . 59

FIGURE 8. Terminal Emulator Window Menu . 62

FIGURE 9. The Coff File Downloader Applet . 64

FIGURE 10. The COFF Dump Utility . 66

FIGURE 11. COFF Dump Utility Output. 66

FIGURE 12. Creating a New Project in Code Composer Studio . 71

FIGURE 13. Adding Files to a Code Composer Studio Project . 71

FIGURE 14. Code Composer Studio Project Window. 72

FIGURE 15. Code Composer Studio Compiler Build Options . 73

FIGURE 16. Code Composer Studio Assembler Build Options . 73

FIGURE 17. Code Composer Studio Linker Build Options . 74

FIGURE 18. Code Composer Studio Build Results Window . 74

FIGURE 19. Code Composer Studio Compiler Build Options . 75

FIGURE 20. Code Composer Studio Assembler Build Options . 76

FIGURE 21. Code Composer Studio Linker Build Options . 76

FIGURE 22. Code Composer Studio Build Results Window . 77

FIGURE 23. M62/cM62 Block Diagram .118

FIGURE 24. FIFOPort Block Diagram . 123

FIGURE 25. Receive FIFOPort Level Status Register . 124

FIGURE 26. Transmit FIFOPort Level Status Register . 125

FIGURE 27. FIFOPort Daughterboard Mechanical Dimensions . 127

FIGURE 28. FIFOPort Timing . 128

FIGURE 29. Serial Port Daughterboard Mechanical Dimensions . 129

FIGURE 30. Digital I/O Port Timing . 133

FIGURE 31. OMNIBUS I/O Connector Pin Configuration . 143
M62 Development Package Manual 9

10
 M62 Development Package Manual

CHAPTER 1 Introduction
 D
This document describes the Zuma software development environment for Innova-
tive Integration (I.I.) digital signal processor (DSP) cards. The environment comes
complete with ANSI compliant C code Compilation, Assembler, Linking, Debug-
ging, and Windows interface software and represents the most complete package
available for DSP code creation for Texas Instruments DSP processors.

Each Developer’s Package consists of four major features:

• TMS320-based DSP board

• Texas Instruments Floating Point C Compiler/Assembler toolset

• Code Composer JTAG-based hardware-assisted debugger

• Zuma software toolset including:

DSP Peripheral Library - supporting on-board peripherals and DSP functions,
with full source code

Custom 32-bit Windows 95/98/NT compatible dynamic link library (DLL) -
which utilizes a custom, 32-bit, Ring 0/Kernel-mode device driver for host PC
software application development

Host Support Applets - for automatic program download, terminal emulation,
COFF file dumping and on-board flash programming

Sample Applications - showing Host PC as well as target DSP coding tech-
niques
evelopment Package Manual 11

Introduction

12
This manual discusses installation issues and includes full documentation on all Innovative Intergration
software tools (please see the accompanying manuals for specific information on the T.I. toolset or
Code Composer Studio software packages). Installation is discussed first, followed by brief introduc-
tions to each of the software packages and instructions on their use. General software development
issues are presented, and a tutorial on DSP software development, particularly as it relates to the inte-
grated use of the software packages included in this kit, are also discussed. References are given for the
peripheral libraries and host DLL packages in the Appendices.

A Note about this Manual

Certain typography conventions are used in this manual to indicate user operations, file types, etc., as
follows:

• Windows application menu commands are identified and presented as pipe-delimited strings indicat-
ing the menu entries which are being discussed. For example, the Load Program menu item under
the File menu in the Code Composer package would be named by the following string:

File | Load Program

Computer readable files and keyboard input/output are represented in Courier font, with user input
in bold. For example, a program file will be referred to by name as

C:\SBC32\TALKER\TALKER.OUT

while user input and commands look like

ROM MYPROG.OUT
 Development Package Manual

CHAPTER 2 Installation
 D
Installation of the Zuma toolset consists of both hardware and software installation
procedures. This document contains complete installation directions for Innovative
Integration’s Development Package. This document also details the features of the
Innovative Integration software generation tools, applets, utilities and peripheral
library functions for the target DSP board. Refer to the Hardware section of this
manual for a discussion of hardware-specific configuration information.

The Development Package consists of software elements developed by Innovative
Integration, Texas Instruments, and other sub-vendors. This document is intended
to augment, not replace, the Installation Supplement and the documentation pro-
vided with the TI C compiler, Code Composer Studio, and other third-party soft-
ware packages. Refer to the documentation provided with those products for a
complete discussion of their features and use.

Host Hardware Requirements

The software development tools for the Zuma toolset require an IBM or 100% com-
patible 486-class or higher machine for proper operation (Pentium-class machines
are highly recommended). The host system must have at least 16 Mbytes of mem-
ory, up to 84 Mbytes available hard disk space, and a CDROM drive. Windows 95/
98 or NT (referred to herein simply as Windows) is required to run the developer’s
package software, and is the target operating system for which host software devel-
opment is supported.
evelopment Package Manual 13

Installation

14
Software Installation

The installation consists of the following major components: TI Compiler install, Code Composer Stu-
dio install, and the Zuma Toolset install. The installation time will take approximately 10 to 15 minutes
depending on the system’s speed. If you have not purchased some of the above listed components, you
can go through the custom install to unselect the non purchased items.

Begin Installation

To install DSP board based products, the Logger PCI, or any of our support DLL's start the host operat-
ing system and insert the installation CD. If the CD does not auto start, click on the <Start> button,
then <Run>. Enter the path to the SETUP.EXE program located at the root of your CD-ROM drive,
i.e. D:\SETUP.EXE. The setup program will run. Select the tab for the type of installation you are
going to do. From there, select the exact product you wish installed. All necessary components includ-
ing the Hasp key drivers, the board drivers, the peripheral libraries and debugging drivers will be auto-
matically installed to your host PC using Install Shield.
 Development Package Manual

Software Installation
Important, Microsoft Windows NT Users Please Note: The installation of the NT Device Driver for
a Peripheral Library requires the installing user to have Administrator rights on the system. This does
not have to be the actual Administrator login, as long as the rights are the same.

Additionally, applications that receive interrupts from a target board must be run by a user with Admin-
istrator rights.

Installation Instructions

InstallShield will be automatically invoked. The following screen will be displayed while Install Shield
is copying the setup files onto your system.

The first screen that will appear is the welcome screen. Click <Next>
 Development Package Manual 15

Installation

16
Now, the license agreement dialog box is displayed. After reviewing it, if you agree, Click <Yes>. If
you do not agree, contact the sales support department.

Next you will be prompted to enter your user information. Enter the User Name, press <Tab>, the
Company Name and click <Next>

Note: Although any installation drive and path may be specified when installing the Peripheral Library,
Innovative Integration highly recommends that the default installation drive and directory be used
whenever possible. The Code Composer workspace files for the sample DSP applications have been
 Development Package Manual

Software Installation
setup with the default directory paths in mind. If an alternate drive or directory is used, the workspace
project setups will need to be changed to reflect the new path. See the Code Composer documentation
for more details on the use of projects and workspaces.

The Innovative Integration Peripheral Library is included with the purchase of all Development Pack-
ages, and includes example DSP software and a complete set of peripheral control libraries as well as
sample host applications and DLL's for use in host code development.

Click <Next> when you are done.

Now you may choose the installation type. If you choose “Typical”, then the following components will
be installed:

• Code Composer Studio

• Peripheral Libraries

• HASP Key drivers

• DSP board drivers

• JTAG debugger driver (see note below)

• PortIo (for NT installs only)
 Development Package Manual 17

Installation

18
NOTE: Both PCI and ISA JTAG drivers have been provided on the installation CD. The PCI JTAG
driver is the default. If you are using an ISA JTAG model, select custom install. Then de-select the PCI
JTAG driver and select the ISA JTAG driver.

If you choose “Custom”, then you may choose the components you would like installed

Make your selection and click <Next>.

If you chose "Custom", then you will see the following screen in order to choose the components you
want to install. Click <Next> when you have made your selections.
 Development Package Manual

Software Installation
Next, the InstallShield will ask which type of JTAG you wish to install (PCI or ISA). After you have
selected the type of JTAG, click <Next>

The installation will add additional components to your system in order support the development envi-
ronment you are be working in. Please select the environment you are working in. If you are working
in an alternate environment not listed below, select none.
 Development Package Manual 19

Installation

20
The InstallShield will now prompt you for the Code Composer Studio password. This can be found on
the Innovative Integration’s CD cover. If you did not purchase the Code Composer Studio with your
package, go back and unselect it from the custom screen.

Next, you will be prompted for the program folder name to use for the board being installed. Click
<Next> when you have made your selection.
 Development Package Manual

Software Installation
Next you will be shown a summary of the installation selections you have made in the previous screens.
If any of the items are incorrect, use the <Back> key to get to the screen with the selection you would
like to change. When you are satisfied with the installation setup, click <Next> to proceed with the
install.

Install Shield will now begin copying files and updating your system. A description of what is being
copied should appear as shown below.
 Development Package Manual 21

Installation

22
Next, InstallShield will take you through the JTAG Debugger Driver Installation.

JTAG Debugger Driver Installation

Innovative Integration Development Packages include a JTAG-based, hardware-assisted C/Assembler
Source Debugger called Code Composer Studio. If you are not using Code Composer Studio or have
already installed it, please skip this section.

If you have purchased an Innovative Integration hardware-assisted debugger, additional hardware, soft-
ware and documentation have been included in your shipment. You should have received the following:

TABLE 1. PCI Debugger Package Contents

TABLE 2. ISA Debugger Package Contents

Item Function

JTAG debugger board (PCI-
bus compatible)

This is the PCI-bus-compatible JTAG emulator host interface
board which plugs into your PC to allow communication with the
target DSP over the JTAG scan path.

Target interconnect host
cable

This provides an electrical connection between the host interface
board and the target digital signal processor CPU.

PCI JTAG pod/pod target
cable

PCI Debugger pod and pod target cable.

Code Composer Debugger
package

(included on installation CD)

This is the host software, which implements the debugger inter-
face. Custom versions exist for each different DSP family - C2x,
C3x, C4x and C5x.

Item Function

JTAG debugger board (ISA-
bus compatible)

This is the ISA-bus-compatible JTAG emulator host interface
board which plugs into your PC to allow communication with the
target DSP over the JTAG scan path.

Target interconnect cable/pod
cable

This provides an electrical connection between the host interface
board and the target digital signal processor CPU.

Code Composer Debugger
package

(included on installation CD)

This is the host software, which implements the debugger inter-
face. Custom versions exist for each different DSP family - C2x,
C3x, C4x and C5x.
 Development Package Manual

Software Installation
PCI-JTAG Debugger Driver Installation: Windows 9X/NT

The PCI style JTAG debugger is a plug and play device. The JTAG debugger drivers are automatically
installed for you and there is no acknowledgment window.

ISA-JTAG Debugger Driver Installation: Windows 9x

The Add New Hardware Wizard will guide you through the JTAG device driver installation. Select
<OK> to continue.

Select <Next> to proceed to the next phase of the hardware driver installation.
 Development Package Manual 23

Installation

24
Click <Next> to allow Windows to search for any new plug and play devices.

If Windows finds any plug and play devices, they will be listed in the screen below and will ask if the
device you want to install is listed. Select <No>, and then click <Next> to proceed:
 Development Package Manual

Software Installation
Windows will now ask if you want it to search for non-plug and play devices installed in your PC.
Click <No>, and then <Next> to proceed:

Windows will prompt you as to the type of new hardware being installed. Select <Other>, and then
<Next> to proceed:
 Development Package Manual 25

Installation

26
Windows will then list the installed drivers. Select the JTAG Controller device and then click <Next>
as seen on the screen below.

The next dialog box will display the I/O address assigned to the JTAG board. It is important to make a

note of the address range listed, as it may be needed when configuring the emulator prior to JTAG
hardware installation.
 Development Package Manual

Software Installation
This information can be re-displayed at any time by simply opening the control panel, double-clicking
<System> icon, selecting <Device Manager> tab, double clicking the <Other> category, double click-
ing the JTAG controller device and viewing its <Resources> tab.

Windows will install the drivers. When finished, Windows shows the dialog box below. Click <Finish>
to continue

The InstallShield will now ask if you would like to shutdown your computer. Select <NO> to proceed
with the installation.

ISA-JTAG Debugger Driver Installation: Windows NT

If you are not installing on a Windows NT system, skip to the next section of this manual. The Installa-
tion will guide you through the DSP board device driver installation for Windows NT. If you are not
using Windows NT, skip to the next section.
 Development Package Manual 27

Installation

28
You will be prompted to launch NT Diagnostics. As with the DSP board device driver installation,
select the <Resources> tab and then click on the <I/O Port> button to see all used I/O locations (see
figure below). The JTAG board requires 40h bytes of I/O space. The JTAG debugger does not require
IRQ or memory resources.

Important, Please Note: The installation of the NT Device Driver for the JTAG card requires the
installing user to have Administrator rights on the system. This does not have to be the actual Adminis-
trator login, as long as the rights are the same.

Once you have located the appropriate resources, click <OK> in the Diagnostics dialog box.

The install program will then display the default resource settings. Make sure to change the settings if
they conflict with existing devices.
 Development Package Manual

Software Installation
Important, Microsoft Windows NT Users Please Note: The NT Device Driver is configured to start
up Automatically after it is installed.

Code Composer Studio Installation

The InstallShield will now launch the Code Composer Studio installation program, click <OK> to pro-
ceed. Please refer to the Code Composer Studio Manual and on screen instructions for additional instal-
lation details.

The Code Composer Studio setup complete message below indicates that the Code Composer Setup
program should be run to configure the device drivers. This will not be necessary since the device driv-
ers have been automatically configured for your target hardware. The release notes can be view after
the complete installation is concluded. Therefore, un-select both the “Launch release notes” and the
“Launch Code Composer Setup”. Click <Finish> to proceed with the installation.
 Development Package Manual 29

Installation

30
Note: The Code Composer Studio setup complete message below suggests restarting your computer.
To continue with the installation, select the “No” option and then click <Finish> to proceed with the
M6x Zuma Tool installation

In order for Code Composer to function you must install the Code Composer Studio key onto the paral-
lel port containing the Hasp key. The Code Composer Studio key can be plugged directly into the Hasp
key.
 Development Package Manual

Software Installation
Hasp Key Installation

The Hasp key installation utility should be automatically activated next.

Upon completion, the Install Utility will show this screen below. It is simply an acknowledgment that
the Hasp install went successfully. Your computer must be restarted before any changes made will take
effect. Click the <OK> button, it will NOT restart your computer.

If you need at any time to run the Hasp Device Driver Installation Utility, simply run it through the
InstallShield, following the installation instructions. When asked for the "Setup Type", choose "Cus-
tom" and select only the "Hasp Key Drivers" installation.

To uninstall the Hasp Device Drivers, double click the "Uninstall Hasp" option on the boards program
icon. For instance, from the "Start Menu", "Start | Programs | <target board> | Uninstall Hasp".
This will uninstall the Hasp Key Drivers.

End Of Installation

Now you will see the final installation screen shown below. If you would like to review the Read Me
file, select the checkbox.
 Development Package Manual 31

Installation

32
At this point you have finished the software installation process. Exit by clicking on the <Finish> but-
ton and go to the Hardware Installation section of this manual. This will conclude the Innovative Inte-
gration Development Software Package installation. Remove the CD from the drive and shutdown your
computer system in preparation for installing the hardware.

Hardware Installation

The software components of the Development Package have been installed. To proceed with the Devel-
opment Package Kit installation, it will be necessary to configure and install your hardware.

JTAG Emulator Hardware Installation

First, the emulator hardware must be configured and installed into your PC. The emulator hardware is
described in the table below:

PCI Pod-Based Emulator Installation

To install the PCI pod based emulator, follow the instructions below:

• Shut down Windows and power-off the host system.

• Touch the chassis of the PC to dissipate any built up static charge.

• Securely install the JTAG board into the host computer.

• Connect the host pod cable from the JTAG board external connection on the end bracket to the JTAG
pod connection. Then, connect the target cable from the JTAG pod to the target DSP card connec-
tion.

Type Features

Pod-based Uses a special ribbon cable with integrated line drivers to connect the
target DSP emulation signals to the JTAG debugger card. Usable on
3.3 volt or 5 volt designs. (Including ‘C54x and ‘C6x)
 Development Package Manual

Hardware Installation
ISA Pod-Based Emulator Installation

Use the following directions to install a pod-based emulator card.

If you haven’t already done so, shut down Windows and power-off your PC. Set the emulator card’s
address to the start of the range given by the emulator device driver just installed (Input/Output Range
from the JTAG Debugger Driver Installation section). The emulator address is adjusted by using a set
of jumpers on the emulator board. The following diagram and table give the appropriate jumper/switch
setting for the pod-based emulator board.

FIGURE 1. Pod Based Emulator Switch/Jumper Positions

TABLE 3. Pod-Based Emulator Card I/O Address Switch Settings

I/O Address A9 A8 A7 A6

0x100 ON OFF ON ON

0x140 ON OFF ON OFF

0x180 ON OFF OFF ON

0x1C0 ON OFF OFF OFF

0x200 OFF ON ON ON

0x240 OFF ON ON OFF

0x280 OFF ON OFF ON

0x2C0 OFF ON OFF OFF

0x300 OFF OFF ON ON

0x340 OFF OFF ON OFF

0x380 OFF OFF OFF ON

0x3C0 OFF OFF OFF OFF
 Development Package Manual 33

Installation

34
Once the address is set, install the board in the host computer and connect the pod cable to the external
DB25 connector on the end bracket. Plug the pod’s target connector into the target DSP card. On JTAG
pods, a standard 14-pin connector has been provided.

DSP Board Installation

Innovative Integration makes DSP products that fall into three basic categories. Hardware installation
directions are given below for the target card. When installing the target card:

1. Power off the host system and touch the chassis of the host computer system to dissipate any static
charge.

2. Remove the DSP card from its protective static-safe shipping container, being careful to handle the
card only by the edges.

3. Install the DSP board into an available 32-bit PCI slot in your PC.

4. Connect the JTAG debugger pod cable from the JTAG board connection to the connector (JP19) on
the target board.

5. Securely install the Hasp Key (see figure below) provided with your board into a parallel port now,
usually LPT1. Terminal will not run without this key.

6. In order for Code Composer Studio to function, you must install the Code Composer Studio key
onto the parallel port containing the Hasp key. The Code Composer key can be plugged directly into
the Hasp key.

7. After completing the hardware installation, boot up your PC.

8. The target card is plug and play, which Windows will detect it at start-up.

FIGURE 2. Hasp Key
 Development Package Manual

Testing the Development Package Installation
Testing the Development Package Installation

At this point, all of the core software and hardware elements of the Innovative Integration Development
Package have been installed. Through this section, <target directory> represents the target boards direc-
tory (example C:\m4x or C:\M6x). In order to test your installation, follow the instructions below.

Configuring the Applets within the Development Package

Each of the Development Packages is supplied with several, standard Windows applets, which are used
to perform common functions with the DSP board. These standard applets include:

TABLE 4. Host Support Applications

These applets are located in the root of the board-specific peripheral libraries and may be accessed using
the Explorer or by right-clicking the <Start> button, clicking <Open>, double-clicking <Programs>
and double-clicking (opening) the Folder associated with the DSP board. This should open a window
containing icons similar to the following:

The target applets are configured in 2 ways:

Directly with the .exe file (“Directly with the .exe file” on page 36)

Through the Start menu (“Through the Start menu” on page 36)

Applet Function

DOWNLOAD.EXE Application to download a debugged DSP application to a DSP
target board without using JTAG debugger.

TERMINAL.EXE Application to act as a terminal emulator to standard I/O requests
posted by the target DSP board during target executing.

COFFDUMP.EXE Application to display memory usage of target executables.

BURN.EXE Application to support burning application code and Talker code
into FLASH ROM on FLASH-based DSP products.
 Development Package Manual 35

Installation

36
Directly with the .exe file

Start the applet by simply double-clicking the applet from within the program group, to run it. For
instance, “C:\<target directory>\Terminal.exe”. This creates a .INI data file that contains the configura-
tion information for the applet. If necessary, this .INI file can be edited (using Notepad or a text editor)
to modify parameters as required.

For example, you may need to modify the Target Number of the DSP board. This is simply a handle to
a DSP device used by the Windows DLL and should be zero unless you are using more than one DSP in
your PC at a time.

FIGURE 3. .INI File Parameters

On single-board DSP's, target zero refers to serial port COM1 and target one refers to serial port COM2,
etc.

Through the Start menu

From the “Start Menu”. For instance “Start | Programs | <target directory> | Terminal”. If you need
to modify the Target Number of the DSP Board, then you must modify the shortcut to the applet to use
the correct Target Number. Bring up the Properties sheet for the shortcut of the applet by right-clicking
Terminal off the Start menu.

In the Terminal properties window, select the “Shortcuts” tab. Change the Target to 1 by modifying the
“Target” to read “C:\<target directory>\Terminal.exe –t 1”. Click <Apply> and then <Close>.

Running the "JTAG Diagnostic" Utility

To verify that the JTAG is functioning properly, open the JTAG Diagnostic by right-clicking the
<Start> button, clicking <Open>, double-clicking <Programs>, double-clicking on the <target direc-
tory>, and double-clicking on <JTAG Diagnostic>. The JTAG Diagnostic utility should run, seen
below.
 Development Package Manual

Testing the Development Package Installation
Then press the <Reset> button before running the test.

If the following 2 items are true:

• The JTAG card must be properly jumpered to match the Input/Output Range specified by Windows
(ISA based JTAG only).

• The JTAG Diagnostic “JTAG Address” must have the same setting assigned to the JTAG device.

If the above conditions are all met and the JTAG is operating properly, then the START/STOP test will
cause the LED on the JTAG card to blink at 0.5 Hz. Click the <Start> button. This should cause the
LED to blink. When you are satisfied that it is operating correctly, click the <Stop> button.

Close the Jtag Diagnostic utility by clicking the <Exit> button.

Running an Example Program using TERMINAL

Each of the Development Packages is supplied with a terminal emulator application which can be used
either stand-alone or in conjunction with Code Composer Studio. The terminal emulator application is
a small, Windows applet, which acts as a receptacle for standard I/O requests generated by a target DSP
application. Refer to the “Support Applets” section of this Manual for detailed information on the ter-
minal emulator.

Invoke the TERMINAL utility now. If successfully started, terminal will display “Talker Init OK” in its
client window. If the Talker fails to start, refer to the Troubleshooting section of this manual. Iterate this
step until Talker initializes successfully. You should see a window similar to the following:
 Development Package Manual 37

Installation

38
Select <COFF Download> from the <File> menu, to begin downloading a program to the target DSP.
This will open a dialog box from which you can select a target DSP program to run. The examples can
be found in the C:\<board directory>\examples\target\ directory:

Select HELLO.OUT from the file list and click <Open> to download and run the classic “Hello World!”
program to the target DSP. The terminal emulator should display “Hello World!”, as shown below:

If so, close the “Terminal” program and proceed to running the “scope” test. Otherwise, refer to the
Troubleshooting section of this manual for the most frequently asked questions and solutions.
 Development Package Manual

Testing the Development Package Installation
Running the "Scope"

Note: This test is for all boards except the SBC32.

Bring up the Scope through the “Start Menu”. For instance, Start | Programs | <target board> |
Scope.

For PCI-bus-based products:

In the ".OUT File to Download" box, press the <...> button which will open a dialog box from which
you can select the scope.out file. This is found in the c:\<board directory>\exam-
ples\host\scope\dsp\ directory.

Select scope.out from the file list and click <Open>. Make sure you have the correct "Target" value
selected (usually 0).

Click <Open> on the scope dialog box - this will enable the <Start> button.

Press the <Start> button to start the scope. A Sine wave should be displayed.

Press <Stop> when you are done.

For ISA-bus-based products:

The scope should automatically display a sine wave. There may be a delay initially.

To exit the scope, click <Exit> on the scope dialog box.

Proceed to Code Composer Testing, below.

Testing the Code Composer Debugger

If you will be running an application which employs standard I/O (i.e. most of the II example pro-
grams), start Terminal.exe. (Refer to Running an Example Program using TERMINAL for instruc-
tions) In Terminal, click Window | Always on Top. This will force the Terminal to always show. Note
that Terminal must be launched prior to Code Composer Studio because Terminal physically resets the
target DSP board during its initialization, which disrupts the JTAG hardware used by Code Composer
Studio.

Next, open the Code Composer folder by right-clicking the <Start> button, clicking <Open>, double
clicking <Programs>, and double clicking (opening) the Code Composer Studio folder. This should
open a window containing icons similar to the following:
 Development Package Manual 39

Installation

40
Double-click on the Code Composer icon “CC Studio” to launch the debugger. You should see a win-
dow similar to the following:

If you do not see the above window, refer to the Troubleshooting section of this manual for the most fre-
quently asked questions and solutions.

If you do see the above window, load and run the HELLO.OUT target application as described below
from Zuma Toolset Examples\Target directory. To load, use File | Load Program and to run, use
Debug | Run Free.
 Development Package Manual

Troubleshooting Installation Problems
The DSP target application should run, displaying “Hello World!” in the terminal window:

You have successfully run your first DSP program from within the Code Composer Studio Source
Debugger environment! Refer to the Code Composer Studio documentation for complete instructions
on how to take advantage of all the features within the debugger software.

Troubleshooting Installation Problems

Most Commonly Asked Questions

This section includes answers to some of the most commonly asked question relevant to installation and
initial testing. If after troubleshooting, components of the Developer’s Package still do not operate cor-
rectly, contact Innovative Integration for technical support.

I already had a licensed copy of the TI tools, so I omitted them from the Development Package.
Whenever I attempt to compile, assemble or link a program from within Code Composer Studio,
the build window shows “Bad command or filename” errors.

Edit your AUTOEXEC.BAT file to add the directory containing your TI toolset to your default path, i.e.:

path = c:\windows;c:\windows\system;c:\fltc
 Development Package Manual 41

Installation

42
Code Composer Studio won’t start. It shows a dialog box that says, “Valid Hardware Key could
not be detected. Please insure the hardware key is fastened securely to your parallel port.”

Make sure the Code Composer Studio hardware key is attached properly to the Hasp Key. Use the
thumbscrews to securely attach the key to the parallel port. Also, make sure you have the correct hard-
ware key for your board.

Code Composer Studio won’t start. It shows a dialog box that says, “Can’t initialize target DSP.
Trouble with JTAG controller. Please insure the I/O port is set properly.

There are several common reasons for this error. Verify each of the following:

• You have properly configured the ISA JTAG debugger board according to the I/O assignment pro-
duced by Windows during the ISA JTAG device driver installation and that all jumpers are properly
oriented for communication with your target.

• Verify that your JTAG cables are properly connected to the host and DSP target board.

• ISA DSP board users: Verify that you have properly configured the DSP target board according to
the I/O and interrupt assignments produced by Windows during the DSP board device driver instal-
lation.

• Stand-alone DSP board users: Verify that the DSP board is powered up and the supply voltages are
correct. If you are using a serial mouse, change the target number setting in the terminal.ini file
(found in the board’s root directory).

• You may have selected the incorrect driver for your DSP target within the Code Composer Studio
setup utility. If you are using a multiprocessor target, check the multiprocessor settings as well.

• When using the pod-based debugger with an JTAG pod, make sure the target is set up to provide the
‘C3x H3 clock (see DSP card Hardware Section for details).

• Verify that the JTAGDIAG “Access Test” passes. Launch the “JTAG Diagnostic” from the program
folder of the board and click the <Reset> then <Start> button

• Check for the proper and most current DLL driver available.

• Verify that DLL in being used is as new as the Innovative Intergration’s website (www.innovative-
dsp.com) version.
 Development Package Manual

Troubleshooting Installation Problems
When I attempt to start Code Composer Studio, my PC “hangs” and won’t respond to the mouse
or keyboard.

If you are using a C3x-based DSP board, insure that the JTAG cable is properly connected between the
debugger board’s C3x JTAG connector and the target DSP board’s JTAG connector.

For all other targets, insure that the JTAG board clock select is configured for OSC and that the on-
board oscillator is seated in its socket.

I have checked and re-checked the settings for my JTAG board and it’s connections to the DSP
target, but Code Composer Studio still won’t start.

The ISA/PCI card edge connector on the JTAG board may be dirty. Clean the ISA/PCI card edge con-
nectors for the JTAG board using a pencil eraser until the edge connector is free of any film or residue.

I can’t seem to load any of the Code Composer Studio workspaces for the Development Package
example programs.

The project workspaces (*.WSP files) were created for proper execution when the DSP board directory
exists on the C:\ drive. If you installed your DSP board directory onto another drive, you will have to
recreate each of the project workspaces. However, it is possible to edit each of the project make files
(*.MAK), modifying all drive letter designators in order to allow them to work on another drive.

Code Composer Studio appears to operate properly (I can load, execute and step through pro-
grams), but standard I/O doesn’t appear on my terminal window when I run the example pro-
grams.

Insure that the TERMINAL applet is configured to communicate with your target board. For single-
board users, the target number corresponds to the PC com port being used (target 0 = COM1, target 1 =
COM2, etc.). For all other targets, the target number is usually zero. You may need to edit the applets
.INI file (using Notepad) in order to manually adjust the target number. The .INI file is located in
the II_BOARD directory.

I have installed a PCI-based DSP card and now my PC won’t boot.

You do not have an available, uncommitted IRQ for use by the PCI card. Enter the system BIOS setup
and reserve an IRQ for use by the DSP board.

I have installed a PCI-based DSP card and my PC boots. But an ISA adapter card in my system
(network card, etc.), which used to work fine, is no longer operating.

The PCI BIOS has assigned the DSP board an IRQ that was already in use by the ISA board. Enter the
system BIOS and reserve an IRQ for use by the DSP board.
 Development Package Manual 43

Installation

44
Our host application is not Windows-based. We’re using DOS, UNIX, OS2, etc. for our host envi-
ronment. How can we develop and debug my target application?

Install Code Composer Studio and the TI tools onto a Windows-based PC and umbilical over to the DSP
board installed in a second machine that is running under the “foreign” operating system. You will not
be able to run TERMINAL and DOWNLOAD under the foreign OS, but the Windows-based system
can be used to develop and deliver code to the target DSP over the JTAG link.

I get a “Talker didn’t start!” message when attempting to download to my single-board DSP from
within TERMINAL or DOWNLOAD.

• Insure that the applet is configured to communicate with your target board. For single-board users,
the target number corresponds to the PC com port being used (target 0 = COM1, target 1 = COM2,
etc.). For all other targets, the target number is usually zero. You may need to edit the applets .INI
file (using Notepad) in order to manually adjust the target number. The .INI file is located in the
II_BOARD directory.

• For Stand Alone boards, verify that the board is getting power and the serial cable is well seated.
Also, make sure all external reset sources connected to the board are not stopping the card from run-
ning.

• Verify that the jumpers on the card are set to the factory defaults.

• Check that the COM port in use is enabled at the BIOS level.

• Check that the port is enabled and available from within the Windows Device Manager

We are planning to use Visual Basic for our host application and want to know if we can access
your host DLL functions?

Yes, the DLL functions are accessible with this tool.

After installing a stand-alone board, my serial mouse no longer works.

Terminal is using the same target number as your mouse (target 0 = COM1, target 1 = COM2, etc.).
Change the target number setting in the TERMINAL.INI file in the board’s directory.

After installing a stand-alone board, my computer won’t reboot, I get a keyboard error at boot
up, or Windows hangs at start up.

Your DSP may be stuck in a bad state. Turn off your computer. Remove power to the board. Turn on
your computer and wait for windows to boot (if prompted to start in safe mode, ignore the message and
do a normal boot). Once windows has started, power up the board.
 Development Package Manual

Troubleshooting Installation Problems
I have downloaded a new driver for my board from you FTP site. How should I install it?

Re-run the driver installation as documented earlier in this document. Your old driver will be overwrit-
ten during the installation.

Code Composer Studio Troubleshooting

If Code Composer Studio did not install or operate properly, it may be helpful to refer to the Code Com-
poser Studio instruction manual for additional information.

Code Composer Studio requires third party device drivers to be installed along with the executable
application in order to support Innovative Integration’s debugger hardware. Therefore, if these device
drivers did not install properly, Code Composer Studio may need to configure for use with the Innova-
tive Integration DSP board you have purchased before being run.

The Installshield should have already installed the Code Composer Studio driver for the DSP board.
Although if it had not, then open the Code Composer Studio folder by right-clicking the <Start> button,
clicking <Open>, double clicking <Programs>, and double clicking (opening) the Code Composer
Studio folder. Then double click on the Setup CCStudio to launch the Code Composer Studio Setup
program seen below.
 Development Package Manual 45

Installation

46
Next, right click and drag the II_Gen6x icon from the “Available Board/Simulator Types” column to the
“System Configuration” column. This will open the following window.

The board name can be change in this window, but it is recommended that you keep the default name
for clarity. Once you have set the board name, click <Next> to proceed.

Verify and/or change the board properties I/O port address value in this screen to the address assigned to
the JTAG by Windows during the JTAG debugger driver software installation phase and then click
<Next>. (The Windows assigned JTAG I/O port address can be displayed by the device manager)
 Development Package Manual

Troubleshooting Installation Problems
Add a single processor to the board by clicking the <Add Single> button and then click <Finish> to
conclude.

If the target is a multiprocessor DSP card, click the <Add Multiple> and enter processor base name for
the target hardware as seen below. Refer to the Code Composer Studio manual for more information on
the use of multiprocessor debugging.

Please note that the number of processors entered in the scan path list must be equal to the actual num-
ber of processors in the emulator scan path. Note also that order of the CPU IDs must match the order
of the CPU’s in the JTAG scan path. This is accomplished by entering the identifiers in what appears to
be reverse order (with cpu_2 before cpu_1 and cpu_3 before cpu_2) in the Processor List:
 Development Package Manual 47

Installation

48
The Code Composer Studio Setup screen should look similar to the one above. Save the setup setting
and exit the Code Composer Studio setup screen. Code Composer Studio debugger installation is now
completed.

Verify Environment Variables

The II Zuma package makes use of DOS environment variables in order to locate header files, code gen-
eration executables, etc. The installation process sets these variables to the settings shown in the
ReadMe file at the time of installation. Be sure to verify the Environment variable settings, especially if
you have installed the TI Compiler/Assembler after the board, before trying to use the board. Note:
upgrading from previous versions or when mixing development components from II and other vendors,
problems can arise.

To verify the settings, go to a DOS Prompt and type “SET”. This will write to the screen the variables
and their values. Check these values against the ReadMe file. The ReadMe file can be found in the root
of the board directory – i.e. C:\<board directory>\ReadMe.txt

To modify the variables under Window 9x, reset these variables in your AUTOEXEC.BAT file. Under
WinNT, set these variables by opening Control Panel | System Icon | Environment tab. Note: place
 Development Package Manual

Multiple Board Support
all entries under System Variables: not under User variables section. Double click the variable name to
modify: edit box (i.e. c_dir), then enter value of environment variable in Value: edit box (i.e. c:\fltc).
After finishing an entry press ‘Set’ button to add it to current settings. Note, unlike Win95/Win98, after
making changes to environment variable settings they take effect immediately, you do not have to
reboot.

Below is a description of the Environment variables that are modified by the installation of an Innova-
tive Integration Board installation:

Multiple Board Support

Multiple target boards of the same type may be installed in the same system with full development soft-
ware support (the only exception being the JTAG debugging support under Code Composer Studio for
multiple ‘C3x targets. Since the modified JTAG standard used on the ‘C3x processors does not support
multiple processor debugging, Code Composer Studio may be used with only one ‘C3x target at a time).
Multiple copies of the support applications may be run simultaneously, each communicating with differ-
ent targets, to provide parallel support for multiple target boards. Follow the instructions below to set
up support for more than one target:

DOS
Environment
Variable Name Products Affected Description

II_BOARD CodeWright/Peripheral
Libraries Directory

Board specific library directory

 - Used for infrastructure

C6x_C_DIR All TI C Compilers

All II peripheral libraries

Code generation tools directory

 - Search path for the compiler

C6x_A_DIR

(optional)

All TI Assemblers Code generation tools directory

 - Search path for the assembler

D_SRC All Debugger products Optional JTAG Debug Directory

 - Search path for the debugger

D_DIR All TI Debuggers Optional JTAG Debug Directory

 - Path to the executable for the
debugger

PATH All II products

All Compilers/Assemblers

Dos search path (new entries are
added to the path)
 Development Package Manual 49

Installation

50
1. Go through the normal installation of the support software per the instructions above.

2. For each target board, make a Windows shortcut icon for each application, which must be used
simultaneously. For example, if the system has three target boards installed and the user wishes to
use the COFF downloader and terminal emulators independently with each board. Then make three
shortcuts each for the two applications and label them “COFF Downloader Target 0”, “COFF Down-
loader Target 1”, etc. To make a shortcut icon, open the “My Computer” desktop icon and open the
drive and installation directory where the development tools were installed. Right click on the appli-
cation for which the shortcut will be made, and select “Create Shortcut”. A new icon will appear in
the folder window, labeled “Shortcut to [APPLICATION NAME]”. Rename the icon appropriately
by right clicking and selecting the “Rename” menu entry, then entering a new board-specific name,
such as “COFF Downloader for Board#1”. Optionally, the shortcut may be dragged onto the desk-
top and the file folder closed to clear display space.

3. Once the shortcut copies have been made for all instances of the application(s) for each target, the
shortcuts must be customized to point to their respective target boards. This is accomplished by
adding command line switches to the Properties dialog box for each shortcut. Right click on each
shortcut and select the “Properties” entry to open the Properties dialog box. Select the “Shortcut”
tab and edit the “Target” text box. Add the target number override switch (-t) followed by a space
and the target number of the board with which this instance of the program will communicate. To
find out each board’s target number, use the FIND utility (described below). For example, if the sys-
tem has two targets installed, one at target number 0 and one at target number 1, the shortcut for the
first board’s COFF downloader would have a “Target” entry of:

[install directory]\DOWNLOAD.EXE –t 0

and the second board’s COFF downloader shortcut would have an entry of:

[install directory]\DOWNLOAD.EXE –t 1

Additional switches may be specified in the “Target” text box to further modify the application’s
individual behaviors. See the support application’s descriptions below for complete details on the
switches available for each application.

Note: The command line switches, specified in the shortcut properties box, act as overrides to the
default behavior selected in the configuration utility. Any switches NOT specified in the shortcut prop-
erties dialog box will cause the applications to revert to the global configuration selected in the configu-
ration program. For example, if the user selects the Automatic Download feature in the configuration
utility and specifies a filename, then all shortcuts created for the COFF downloader will automatically
download that file on start-up. If one of the shortcuts specifies a -d[FILENAME] switch in its property
box, then that shortcut will download the specified filename on start-up, rather than the default applica-
tion selected in the configuration utility.
 Development Package Manual

Uninstall Process
Uninstall Process

The uninstallation process is quite simple, and it is different for Win95/Win98 than for Windows NT.

Windows 95/Windows 98 Uninstallation

The uninstallation process consists of using the target board uninstall utility to remove the software and
editing the autoexec.bat file to remove environment variables.

To uninstall the software, right-click the <Start> button, clicking <Open>, double-clicking <Pro-
grams>, and double-clicking the Folder associated with the DSP board. This should open a window
containing icons similar to the following:

You will first double-click the Uninstall HASP icon and the following screen will appear. Click <OK>.
 Development Package Manual 51

Installation

52
You will then double-click the uninstall <target board> icon and you will be asked if you really want
to remove the <target board> DSP board and all of its components. Click <Yes>.

The program and its components will be removed and the screen below will be shown.

When it is done, it will let you know if any problems occurred. If there was a problem, view the
"Details" to see what was not removed. You should then manually remove any files that were not auto-
matically deleted.

Next, you should remove environment variables that were added to the autoexec.bat. Remove the fol-
lowing variables: "<target board>_a_dir", "d_src", and "ii_board". Now remove any board related
paths from the "<target board>_c_dir" and "path" variables.

The JTAG device must be remove from the Device Manager as follows:
 Development Package Manual

Uninstall Process
From the Control Panel, double-clicking on the System icon. Click on the Device Manager tab. Find
the Other directory, and click the board you wish to uninstall (JTAG Controller). Then click the
<Remove> button as shown below.

Confirm the device removal by clicking the <OK> button and then restart your computer system for the
changes to take affect.

Note: The Code Composer Studio has not been uninstalled. To uninstall this software refer to the unin-
stallation instructions in the Code Composer Studio manual.
 Development Package Manual 53

Installation

54
Windows NT Uninstallation

The uninstallation process consists of using the “Add/Remove” windows utility to remove the software
and using the regedit utility to remove environment variables.

First, open the “Add/Remove Programs” utility in the Control Panel. Then highlight the board and
click <Add/Remove>.

You will then be asked if you really want to remove this program. Click <Yes>. Next, the program will
be removed. When it is done, it will let you know if any problems occurred. If there was a problem,
view the “Details” to see what was not removed. You should manually remove any files that were not
removed.

Next, you should remove portions of the environment variables that were added. Remove any board
related paths from the “<target board>_c_dir” and “path” variables. For instance, if the <target
board>_c_dir currently has “c:\<target board>;c:\<target board>\include\target;c:\fltc” as it’s value,
remove the “c:\<target board>;c:\<target board>\include\target;” portion. To accomplish this, open
Control Panel | System Icon | Environment tab.
 Development Package Manual

CHAPTER 3 Integrated Development
Environment
 D
The C Developer’s Package consists of several software tools, integrated to work
together to provide a complete DSP design environment for Innovative Integration
DSP boards. This section discusses the tools included in the development package
and gives descriptions of each applets features and use. A brief introduction is
given regarding the software programs provided and their use within the Devel-
oper’s Package. The user is referred to the individual manuals accompanying these
software products for complete documentation.

The Texas Instruments C Compiler Toolset

The C compiler supplied with the Developer’s Package is the Texas Instruments
(T.I.) Floating Point C Compiler toolset for the DSP target board. The compiler
runs under Windows as a cross compiler, generating executable applications for the
DSP processor which are then downloaded and executed using the other tools in the
Developer’s Package. The compiler is ANSI C compatible and supports nearly all
standard C functions. Additional libraries provided with the Developer’s System
include C standard I/O and peripheral drivers for the A/D, D/A, bit-I/O and timers.
Assembly language may also be mixed with C code for higher performance where
required.

Typical application programs will consist of one or more C (.C), header (.H), and
Assembly language (.ASM) source files, as needed. Additionally, target program
generation requires use of a linker command file (.CMD) which specifies the mem-
ory map for the target and optionally includes commands defining the libraries to
be linked into the final application.
evelopment Package Manual 55

Integrated Development Environment

56
Users of the Code Composer Studio editor/debugger will also employ make (.MAK), workspace (.WSP)
and special Code Composer-specific script files (.GEL). The example programs included in the Devel-
oper’s Package illustrate the use of these files also and give example files to use as a basis for custom
DSP applications.

C Compiler Toolset Usage

The C compiler may be run directly from a DOS Prompt window under Windows 95/98/NT as
described in the TI toolset documentation. Also included in the installation directory are batch files use-
ful for manually rebuilding applications programs within the DOS environment. COMPILE.BAT and
ASSEMBLE.BAT are batch files which will re-compile/reassemble a C or Assembly source file (respec-
tively) specified as a target parameter to these batch files. The LINK.BAT will invoke the TI Linker to
link several object modules to create a target executable (.OUT) file, consuming a linker command file
(.CMD) as a parameter.

Code Composer Studio

Code Composer Studio is a flexible, high-performance, integrated code generation environment devel-
oped by Texas Instruments and bundled into the Innovative Integration Zuma toolset. For complete
documentation to the features of Code Composer Studio package, refer to the accompanying Code
Composer Studio Manual provided. If the user wishes to compile outside of Code Composer Studio (or
has not purchased the package), these make files may be used from the DOS command line to rebuild
individual project files or the entire target file set.

Editor

Code Composer Studio supports code editing and emulates the most popular editing packages (CUA,
etc.). Code Composer Studio is a Window editor. Custom DSP code development can take place
entirely within the Code Composer Studio environment using its project management tools to place
source files, libraries and linker command files into projects (.MAK) in order to build executables. The
example programs included in the Developer’s Package each have a Code Composer project file
(.MAK) associated with them which may be used to re-compile the example.

Debugger

Code Composer Studio is a software program for high-level TI C and Assembly Language debugging
which supports high-performance, JTAG or MPSD-based hardware assisted debugging directly on the
target DSP to gain access to the internal register set, peripherals, and bus of the target board in order to
load, run, and debug applications. Also integrated into the Code Composer Studio software package is
a code management subsystem for editing files as well as creating and compiling DSP projects.
 Development Package Manual

CHAPTER 4 Support Applets
 D
The Developer’s Package includes four support applications supporting general
DSP development: the terminal emulator (TERMINAL.EXE), the COFF file down-
loader (DOWNLOAD.EXE), the COFF file display utility (COFFDUMP.EXE) and
the FLASH prom programming facility (BURN.EXE). This section describes the
functionality of each of the applications and their use within the development sys-
tem.

The functions provided by each of the applications may be configured through
menu selections available within each of the applets themselves. Generally, param-
eters governing the behavior of each applet are stored in program-specific .INI
files, located in the directory from which the applet is invoked. See the discussion
below for applet-specific parameters.

The Terminal Emulator

The terminal emulator provides a C language-compatible, standard I/O terminal
emulation facility for interacting with the stdio library running on the DSP pro-
cessor. Display I/O calls such as printf(), scanf(), and getchar() are
routed between the DSP target and the Host terminal emulator applet where ASCII
output data is presented to the user via a terminal emulation window and host key-
board input data is transmitted back to the DSP. The terminal emulator works
almost identically to console-mode terminals common in DOS and Unix systems,
and provides an excellent means of accessing target program data or providing a
simple user interface to control target application operation.
evelopment Package Manual 57

Support Applets

58
FIGURE 4. Terminal Emulator Applet

The terminal emulator is straightforward to use. The emulator will respond to stdio calls automatically
from the target DSP card and should be running before the DSP application is executed in order for the
program run to proceed normally. DSP program execution will be halted automatically at the first stdio
library call if the terminal emulator is not executing when the DSP application is run, since standard I/O
uses hardware handshaking, except on stand-alone SBC targets. stdio output is automatically printed to
the current cursor location (with wraparound and scrolling), and console keyboard input will also be
displayed as it is echoed back from the target.

The terminal emulator also supports Windows file I/O using the library routines fopen(),
fclose(), fread(), fwrite(), fseek() and fflush(). Refer to the Appendix for proto-
types and usage of these library functions as their usage is not 100% ANSI compliant.

Terminal Emulator Menu Commands. The terminal emulator provides several menus of commands
for customizing its functionality. The following is a description of each menu entry available in the ter-
minal emulator, and its effects

.

FIGURE 5. Terminal Emulator File Menu

File Menu. File | COFF Download - provides for COFF program downloads from within the terminal
emulator. When selected, a file requester dialog box is opened and the pathname to the COFF filename
to be downloaded is selected by the user. Clicking “Open” in the file requester once a filename has been
selected will cause the requester to close and the file to be downloaded to the target and executed.
Clicking “Cancel” will abort the file selection and close the requester with no download taking place.
 Development Package Manual

The Terminal Emulator
Q62 Users: Terminal supports downloading of .OUT or multi-processor .MPO files. .MPO files pro-
vide a means of downloading separate .OUT files to multiple processors simultaneously, which greatly
simplifies the task of synchronizing execution in a multi-processor environment.

NOTE: File | COFF Download physically resets the target DSP (in order to initiate the target Talker
program) prior to the download. When using the terminal emulator in conjunction with the Code Com-
poser debugger, use Code Composers File | Load Program facility to download executable code to the
target rather than the terminal emulator’s download facility, since the Code Composer mechanism does
not physically reset the target during the download, it is not reliant on the target Talker to perform the
download.

FIGURE 6. Diagnostic Received when Target DSP is Halted.

If you attempt to download using the COFF Download menu within the terminal emulator while using
Code Composer, you may receive the diagnostic dialog box, which indicates that Code Composer has
halted the target processor via the JTAG hardware link. While in this halted state, the terminal emulator
cannot invoke the Talker program on the target DSP in order to perform the software download. To cor-
rect this problem, execute the Debug | Run Free menu command from within Code Composer to release
the DSP from JTAG control. Afterwards, clear the terminal emulator error message dialogs and retry
the terminal emulator COFF Download.

File | Plot – opens the Plot dialog box, similar to the one listed below.

FIGURE 7. Terminal Emulator Plot Menu Dialog Box.
 Development Package Manual 59

Support Applets

60
The Plot dialog specifies all of the available options for plotting binary data in Host PC files. Binary
data files, usually created by target DSP programs using the fopen() and fwrite() functions, may
contain data in a wide variety of formats which may be plotted in a window from within this dialog box.

Each time data is plotted in the plot window, statistics on the plotted graph are calculated. These statis-
tics are reported in the graph window. The statistics include:

Min displays the minimum value in the data set.

Max displays the maximum value in the data set.

Delta displays the difference between the minimum and maximum values in the data set.

Sdev displays the standard deviation of the data set.

Mean displays the mean value of the data set.

The terminal emulator is capable of plotting files in which binary data has been stored in a wide variety
of formats. The default data file format is successive 32-bit (four-byte) values each representing a sin-
gle TI floating point Y amplitude value. X axis data is not contained in the file and the Y axis amplitude
data is plotted against an implied X axis of successively incrementing sample # values, starting at zero.

Each of the available plot options is detailed below.

Edit Boxes . Significant Bits specifies the number of significant bits in each data value stored in the
data file. The number of bits may range from one to thirty-one. This parameter allows you to plot data
gathered from a device at virtually any resolution. For example, if data is accumulated from a 12-bit A/
D converter and stored into a binary data file from the target DSP, it would be stored on disk as 16-bit
byte-pairs. When plotting this data, with significant bits set to 12, the fallow upper four bits of each 16-
bit sample in the data file will be ignored during the data plotting operation.

This parameter indirectly specifies the size of each data sample within the data file, as well. The size of
each sample (in bytes) is given by the equation:

Sample size = (significant bits + 7) / 8

The sample size is always the truncated integer result of this formula. Use of the term sample through-
out the rest of this section refers to clusters of bytes within the data file of size sample size.

Shifted specifies the number of bits to shift each data sample stored in the data file, prior to plotting.
The number of bits may range from negative thirty-one to positive thirty-one. This parameter allows
you to plot data gathered from a device when the output lines of the device are not mapped onto the
low-order lines of the data bus. For example, on some of Innovative Integration’s DSP boards, a 12-bit
A/D is mapped onto data bus bits 15 though 4 rather than on bits 11 through 0. If this data were plotted
without modification, the data would erroneously range from –32767 to +32768 rather than the actual
12-bit A/D range of –2047 to + 2048. By specifying a Shifted parameter of 4, each data sample
extracted from the data file would be right-shifted four bits prior to plotting to compensate for this
effect.
 Development Package Manual

The Terminal Emulator
Decimate specifies the number of file data points to be skipped between plotted data samples. This
option is useful when dealing with a data file containing more than one sample set or in instances where
more data is contained in the file than need be plotted. This field must contain a value greater than or
equal to one. A value of one specifies that no data should be skipped; a value of two specifies that every
other data sample should be discarded, etc.

Header specifies the number of file data samples to be skipped at the beginning of the data file before
extracting data to be plotted. This option is used to skip irrelevant data appearing at the beginning of a
data file.

Note: Combinations of Decimate and Header can be used to view individual, 16-bit channels of data
acquired as 32-bit pairs on certain DSP boards. For example, the PC31 features two A/D channels, A
and B. The A channel is mapped onto the upper 16-bits of the 32-bit data bus while the B channel is
mapped to the lower 16-bits of the bus. If this data were written to a data file as 32-bit data, The Deci-
mate parameter could be set to 2 to allow plotting of every other sample in the file (all of the A channel
data). Further, the Header parameter could be set to 1 in conjunction with the above Decimate setting to
allow skipping of the first sample in the file in order to plot of all of the B channel data in the file.

Fit specifies that the plotted data should be curvefit to the specified order, ranging from zero to five,
using a least-squares regression technique. The curvefit data is plotted atop the actual data in red. The
correlation coefficient of the fit and the curvefit equation are displayed in the graph window whenever
this parameter is greater than zero.

Data File indicates that name of the file containing the data to be plotted.

Radio Buttons. IEEE – When checked, indicates that each sample in the data file is stored in 32-bit
IEEE-754 floating-point format. When enabled, the Significant Bits and Shifted fields are ignored.

TI – When checked, indicates that each sample in the data file is stored in 32-bit TMS320 TI native
floating-point format. When enabled, the Significant Bits and Shifted fields are ignored. This is the
default data mode.

Signed – When checked, indicates that each data sample in the data file is signed integer data. When
enabled, the Significant Bits and Shifted fields are observed.

NOTE: When IEEE, TI and Signed are unchecked, the data is assumed to have been stored in the data
file as unsigned integer data.

XY – When checked, indicates that data samples have been stored in the data file as X-Y (distance,
amplitude) pairs rather than in the default data format. In the default format, only the Y (amplitude)
data is stored in the file and it is plotted against an implied, incrementing “sample number” X. In the
XY mode, samples are parsed from the file and plotted in pairs. Therefore in this mode, half as many
points are plotted from the data file.

FFT – When checked, indicates that a Fast Fourier Transform should be applied to the data in the data
file prior to plotting.

File | Exit - exits the terminal emulator program.
 Development Package Manual 61

Support Applets

62
FIGURE 8. Terminal Emulator Window Menu

• Window | Clear Screen - clears the terminal emulation screen and resets the current cursor position
to the top left hand corner.

• Window | Reset - causes the terminal emulator to reset all internal stdio processing and clears the
screen. If processing is currently halted (via the File | stdio Disabled command), it is then re-
enabled. The Reset command is useful when the terminal emulator needs to be initialized prior to
running a new DSP application on the target. This can become necessary because the emulator uses
multi-character control codes to implement cursor movement and screen control functionality. It is
also possible to halt DSP processing (via the JTAG debugger interface) in the middle of a stdio call,
which is processing a multi-character sequence. If the program is not continued, this causes the ter-
minal emulator to misinterpret subsequent, new stdio activity. Terminal emulation should always be
reset, either via this menu entry or by calling the stdio_reset() function within the new appli-
cation, before new stdio activity is attempted.

• Window | stdio Disabled - a toggling command which allows the user to temporarily disable stdio
emulation. This will cause the DSP program to halt at the next stdio library call, and remain paused
until stdio processing is again re-enabled by selecting this menu entry. stdio activity processing is
halted while the menu entry is checked.

• Window | Always On Top - a toggling command which will cause the terminal emulator to float
above other windows on the desktop. This is useful when running stdio-based code from within the
Code Composer environment, where the terminal needs to be visible at all times. The terminal will
remain atop other windows when this entry is checked. Select the entry again to uncheck and allow
the terminal emulator window to be obscured by other windows.

• Window | Quiet Mode – Disables verbose error and diagnostic messages during terminal execution.

DSP Menu

• DSP | Reset - causes the terminal emulator to momentarily assert the target’s physical reset pin,
bringing the target board into a cold-start, initialized condition.

• DSP | Interrupt - causes the terminal emulator to trigger a target mailbox interrupt using the test code
of 0x80 as the signal value. Helpful during testing of target interrupt handlers.
 Development Package Manual

The Terminal Emulator
Reload Menu

• Reload - Causes the terminal emulator to re-download and restart the last COFF application previ-
ously selected with the File | COFF Download command.

Help Menu

• About - presents program copyright and version information plus information pertaining to the use
of Host resources by the target DSP board.

Terminal Emulator Command Line Switches. The terminal emulator also provides the following
command line switches to further modify program behavior. The switches must be supplied via the
command line or within Windows shortcut properties (see the Installation section for more informa-
tion), and will override the default behavior of the applet.

• -tX - address selector switch, which allows the user to force the terminal emulator to interact with a
specified target. This switch is particularly useful in multi-board installations to create instances of
the emulator for targets other than target 0. See the Installation section for more information on
multi-board installations. The X parameter specifies the logical target number with which to com-
municate. NOTE: For single-board targets, specify target 0 for boards connected via COM1 and tar-
get 1 for boards connected via COM2.

• -ffilename - address selector switch, which allows the user to force the terminal emulator to down-
load the specified file to the target DSP board, as soon as the terminal emulator is loaded. This
switch is particularly useful in situations where the terminal emulator is “shelled to” from within an
other Host applications to facilitate the automatic execution of target applications employing stan-
dard I/O.
 Development Package Manual 63

64
The COFF File Downloader

The COFF downloader utility provides users with the capability to download and execute COFF files
generated by the C compiler or Hypersignal toolsets. This allows users to distribute executable applica-
tions independent of the DSP development tools.

FIGURE 9. The Coff File Downloader Applet

The COFF downloader is simple to use. Double click on the COFF Downloader icon and the program
will start and will open a small window with two menu entries, File and Window. To download an
application, click on File | Download. This will present a file requester dialog box containing a list of
suitable COFF files (.OUT) which can be downloaded. Select the desired target executable and click
OK to proceed. Click Cancel to abort the download command without selecting a filename.

Once a file is selected, the target will be reset-cycled (to restart its talker), the program will be down-
loaded and the application launched on the DSP. If any errors are encountered during the download or
the download fails to succeed for any reason, an error message box will appear. Typical reasons for fail-
ure include improper file selections (a nonexistent or non-COFF format file was selected for download)
or errors in hardware or software installation. If repeated errors are noted, proceed to the Installation
Troubleshooting section below.

The COFF downloader provides for automated downloads for use in situations where a single applica-
tion needs to be downloaded and run on the target each time the system is brought up. This can be valu-
able when placed in the Windows Start-up Folder to automatically download a specific DSP program
each time Windows is restarted.

Q62 Users: Download supports downloading of .OUT or multi-processor .MPO files. .MPO files pro-
vide a means of downloading separate .OUT files to multiple processors simultaneously, which greatly
simplifies the task of synchronizing execution in a multi-processor environment.

 The File | Exit menu selection will terminate the download application.

COFF File Downloader Menu Commands. The following is a brief description of commands avail-
able from the COFF Downloader menus:

File Menu

• File | COFF Download - provides for COFF program downloads from within the terminal emulator.
When selected, a file requester dialog box is opened and the pathname to the COFF filename to be
downloaded is selected by the user. Clicking “Open” in the file requester once a filename has been
selected will cause the requester to close and the file to be downloaded to the target and executed.
 Development Package Manual

The COFF File Downloader
Clicking “Cancel” will abort the file selection and close the requester with no download taking
place.

NOTE: File | COFF Download physically resets the target DSP (in order to initiate the target Talker
program) prior to the download. When using the terminal emulator in conjunction with the Code
Composer debugger, use Code Composers File | Load Program facility to download executable code
to the target rather than the terminal emulators download facility, since the Code Composer mecha-
nism does not physically reset the target during the download and is not reliant on the target Talker
to perform the download.

• File | DSP Reset - causes the terminal emulator to momentarily assert the target’s physical reset pin,
bringing the target board into a cold-start, initialized condition.

• File | Exit - exits the terminal emulator program.

Window Menu

• Window | Quiet Mode – Disables verbose error and diagnostic messages during terminal execution.

• Window | About - presents program copyright and version information.

Reload Menu

• Reload - Causes the terminal emulator to re-download and restart the last COFF application previ-
ously selected with the File | COFF Download command.

COFF File Downloader Command Line Switches. The COFF Downloader also provides the follow-
ing command line switches to further modify program behavior. These switches must be used in Win-
dows 95/NT shortcut icons (see the Installation section for more information), and will override the
same selection made in the configuration utility.

• -tX - target number selector switch, which allows the user to force the terminal emulator to interact
with the specified target. This switch is particularly useful in multi-board installations. See the
Installation section for more information on multi-board installations. The X parameter specifies the
logical target number with which to communicate. For single-board targets, specify target 0 (zero)
for boards connected via com1 and target 1 (one) for boards connected via com2.

• -q - force quiet mode switch, which causes the terminal emulator to omit non-fatal warning mes-
sages. Fatal errors are still presented in message boxes.

• -dpathname - cause the downloader to automatically download the named file. Complete path and
filename must be given (as in c:\sbc32cc\hello.out).
 Development Package Manual 65

66
The COFF File Dump Utility

The COFF downloader utility provides users with the capability to generate a report detailing the mem-
ory usage of target DSP programs generated using the TI tool set.

FIGURE 10. The COFF Dump Utility

COFFDUMP.EXE parses through COFF files stored in files on the hard disk and ascertains the complete
memory consumption by the DSP program. Memory usage for each of the sections defined in the appli-
cations command file are tabularized and the results are written to the Windows NotePad scratch buffer.
If desired, Notepad can then be used to write the data to disk or to a printer.

FIGURE 11. COFF Dump Utility Output.

COFF Dump Utility Menu Commands. The following is a brief description of commands available
from the COFF Downloader menus:
 Development Package Manual

The COFF File Dump Utility
File Menu

• File | Dump – Involves the standard Windows file selector window for COFF output files (.OUT).
Parses through selected file and writes diagnostic dump of contents of executable image to NotePad
scratch buffer.

• File | Exit - exits the dump utility program.

Window Menu

• Window | About - presents program copyright and version information.
 Development Package Manual 67

68
 Development Package Manual

CHAPTER 5 Developing Target Code
 D
Introduction

The Innovative Integration (I.I.) Zuma Toolset allows users of I.I. DSP processor
boards to develop complete executable applications suitable for use on the target
platform. The environment suite consists of the TI Optimizing C Compiler,
Assembler and Linker, the Code Composer debugger and code authoring environ-
ment as well as I.I.’s custom Windows applets (such as the TERMINAL.EXE termi-
nal emulator).

Code Composer Studio is the default package used to automate executable build
operations within Innovatives Zuma Toolsets, simplifying the edit-compile-test
cycle. Source is edited, compiled, and built within Code Composer Studio, then
downloaded to the target and tested within either the Code Composer Studio debug-
ger or via the Zuma terminal emulator.

On C6x platforms, such as Innovatives M6x, SBC6x and Quatro6x, Code Com-
poser Studio may be used for both code authoring and code debugging. Details of
constructing projects for use on Innovative DSP platforms using Studio are pro-
vided in this chapter.

Do not confuse the creation of target applications (code running on the target DSP
processor) with the creation of host applications (code running on the host plat-
form). The TI tools generate code for the TI DSP processors, and are a separate
toolset from that needed to create applications for the host platform (which would
consist of some native compiler for the host processor, such as Microsoft’s Visual
C++ or Borland Builder C++ for IBM compatibles). To create a completely turn-
evelopment Package Manual 69

Developing Target Code

70
key application with custom target and host software, two programs must be written for two separate
compilers. While I.I. supports the use of Microsoft C/C++ for generation of host applications under
Windows with sample applications and libraries, we do not supply the host tools as part of the Develop-
ment Environment. For more information on creating host applications, see the section in this manual
on host code development.

This section supplies information on the use of the development environment in creating custom or
semicustom target DSP software. It is not intended as a primer on the C language. For information on
C language basics, consult one of the C primer books available at your local bookstore. The definitive
reference to the C language is The C Programming Language, by B. Kernighan and D. Ritchie (Prentice
Hall. Englewood Cliffs, NJ. 1988).

Components of Target Code (.c, .asm, .cmd)

In general, DSP applications written in TI C require at least two files: a .c file (or “source” file) con-
taining the C source code for the application, and a .cmd file (or “linker command” file) which con-
tains the target-specific build data needed by the linker. There may also be one or more .asm
assembler source files, if the user has coded any portions of the application in assembly language.

Edit-Compile-Test Cycle using Code Composer Studio

Nearly every computer programming effort can be broken down into a three step cycle commonly
known as the edit-compile-test cycle. Each iteration of the cycle involves editing the source (either to
create the original code or modify existing code), followed by compiling (which compiles the source
and creates, or builds, the executable object file), and finally downloading and testing the result to see if
it functions in the desired fashion.

When using the Code Composer Studio, these stages of the cycle are accomplished entirely within the
Studio integrated environment. The project features of Code Composer Studio support the project and
component file editing and compilation stages, along with allowing the executable result to be down-
loaded and tested on the target hardware.

A Simple Code Composer Studio Project

The following sequence illustrates the creation of a project to build the “Hello World!” program
from within Code Composer Studio.
 Development Package Manual

A Simple Code Composer Studio Project
First, start Code Composer Studio. Select Project | New from the Project menu and you will see the fol-
lowing dialog:

FIGURE 12. Creating a New Project in Code Composer Studio

Browse to the directory in which you would like to create the new project (your working directory) and
then type the name of the new project. In this example, the working directory is c:\ti\bin and the project
name is hello.mak. In the standard developers package, you may browse into the <I.I. target
board>\EXAMPLES\TARGET directory.

Next, open the Project | Add Files to Project dialog box to add files to the project. Add the HELLO.C
file from the C:\<I.I. target board>\Examples\Target directory and the GENERIC.CMD file
from the C:<I.I. target board> directory to the project. Remember to choose the correct file type then
when you have selected the file to add, click <Open> button.

FIGURE 13. Adding Files to a Code Composer Studio Project
 Development Package Manual 71

Developing Target Code

72
It is imperative that you add an appropriate command file to the Code Composer Studio project. The
generic.cmd command file describes the memory map of the target hardware, without which the linker
will be unable to place executable sections into appropriate memory regions for debugging. That is, the
memory map for the target DSP specified in the generic.cmd file will be used to link the project output
file. If you wish, you may copy the contents of the generic.cmd file (located in the root of the Zuma
toolset) into your working directory, rename it appropriately and add the modified cmd file to your
project instead.

The library files will be required, but do not add them directly into the project like the hello.c and
generic.cmd files. Rather, manually type the desired libraries needed to link the project into the Project
| Options | Linker tab when instructed to do so later within this chapter.

Next, you may optionally open the files in the project by double-clicking on their names within the
Project window.

FIGURE 14. Code Composer Studio Project Window.

Next, you must configure the project compiler settings so that when Hello.c is compiled, the appropriate
memory model and switches are used.

Build Options (M62, Q62, SBC62 Boards)

Click on Project | Options to open the Build Options dialog box, then click on the Compiler tab to show
the current compiler options.

Configure the compiler options to use the following settings: In the Memory Models combination box,
select “Aggregate Data and Calls are far (-ml2 memory model)”. Then in the category column, choose
Optimization and select “Level 2 - Global”. In the category column, choose Assembly and de-select
“Keep Labels as Symbols”. Again in the category column, choose Runtime Model Options 1 and select
“Big Endian Format”. Then type the last compiler build option “-x2” in the edit box at the end of the
 Development Package Manual

A Simple Code Composer Studio Project
command line being edited. When finished, the compiler dialog screen should look exactly like one
below.

FIGURE 15. Code Composer Studio Compiler Build Options

Next, click on the Assembler tab and configure the assembler build options. In this screen, make sure
the following options are selected “Enable Symbolic Debug Information”, “Make All Symbols Global”
and “Produce big-endian format codes”. When finished, the assembler dialog screen should look like
one below.

FIGURE 16. Code Composer Studio Assembler Build Options
 Development Package Manual 73

Developing Target Code

74
Finally, click on the Linker tab and configure the linker build options as follows. In the Output Module
combination box select “Relocatable Executable”. Then set the Heap Size to 0x400 bytes and the Stack
Size to 0x800 bytes. Make sure the Exhaustively Read Libraries has been selected. Now, add stdio.lib;
periph.lib; dsp.lib; and rts6201e.lib into the Include Libraries edit box (in that order). When finished,
the linker dialog screen should look like one below.

FIGURE 17. Code Composer Studio Linker Build Options

Once all the build options have been set, rebuild your project by clicking Project|Rebuild All in the
Code Composer Studio menu bar. If errors are encountered in one or more source files, they are listed
in the output window. You may visit and repair each error by either double clicking on each error in the
Output window.

FIGURE 18. Code Composer Studio Build Results Window
 Development Package Manual

A Simple Code Composer Studio Project
Build Options (M67, Q67, SBC67 Boards)

Click on Project | Options to open the Build Options dialog box, then click on the Compiler tab to show
the current compiler options.

Configure the compiler options to use the following settings: In the Memory Models combination box,
select “Aggregate Data and Calls are far (-ml2 memory model)”. In the Target Version combination
box, select “67xx”. Then in the category column, choose Optimization and select “Level 2 - Global”.
In the category column, choose Assembly and de-select “Keep Labels as Symbols”. Again in the cate-
gory column, choose Runtime Model Options 1 and select “Big Endian Format”. Then type the last
compiler build option “-x2” in the edit box at the end of the command line being edited. When finished,
the compiler dialog screen should look exactly like one below.

FIGURE 19. Code Composer Studio Compiler Build Options

Next, click on the Assembler tab and configure the assembler build options. In this screen, make sure
the following options are selected “Enable Symbolic Debug Information”, “Make All Symbols Global”
and “Produce big-endian format codes”. When finished, the assembler dialog screen should look like
one below.
 Development Package Manual 75

Developing Target Code

76
FIGURE 20. Code Composer Studio Assembler Build Options

Finally, click on the Linker tab and configure the linker build options as follows. In the Output Module
combination box select “Relocatable Executable”. Then set the Heap Size to 0x400 bytes and the Stack
Size to 0x800 bytes. Make sure the Exhaustively Read Libraries has been selected. Now, add stdio.lib;
periph.lib; dsp.lib; and rts6701e.lib into the Include Libraries edit box (in that order). When finished,
the linker dialog screen should look like one below.

FIGURE 21. Code Composer Studio Linker Build Options
 Development Package Manual

A Simple Code Composer Studio Project
Once all the build options have been set, rebuild your project by clicking Project|Rebuild All in the
Code Composer Studio menu bar. If errors are encountered in one or more source files, they are listed
in the output window. You may visit and repair each error by either double clicking on each error in the
Output window.

FIGURE 22. Code Composer Studio Build Results Window

Automatic makefile creation

When a project is created, opened, modified, built or rebuilt, the Code Composer Studio dependency
generator automatically generates a project makefile (named <project file>.mak, located in the
project directory), which is capable of rebuilding the project’s output file from its components.

This file is automatically submitted to the internal make facility whenever you click on build or rebuild
within Code Composer Studio. The make facility automatically constructs the output file by recompil-
ing the out-of-date source files including the dependencies contained within those source files.

Rebuilding a Project

It is sometimes necessary to force a complete rebuild of an output file manually, such as when you
change optimization levels within a project. To force a project rebuild, select Project | Rebuild All from
the Code Composer Studio menu bar.

Running the Target Executable

The hello program is very simple, only printing the single line “Hello, World” to the terminal emula-
tor before waiting to echo any keystrokes and exiting. Bring up the “Hello, World” source file edit
screen. Scroll down the source file by using cursor down button until you reach the call to printf(),
which looks like the following:

printf("Hello, World\n");

Change the output string to read “Hello, Brave New World\n”. You can now compile the new
version by executing Build from the Project menu (or by clicking on its toolbar icon). This causes Code
Composer Studio to start the compiler, which produces an assembly language output. The compiler
then automatically starts the assembler, which produces a .obj output file (hello.obj). Code Com-
poser Studio then invokes the TI Linker using the generic.cmd file, which is located in the root
 Development Package Manual 77

Developing Target Code

78
board directory. This rebuilds the executable file using the newly revised hello.obj . If no errors
were encountered, this process creates the downloadable COFF file hello.out, which can be run on
the target board. At this point, the program may be run using the Terminal Emulator applet, which may
be invoked using the Terminal shortcut located within the target board program group created during the
Zuma Libraries installation process. In the terminal emulator, download the hello.out file. The pro-
gram runs and outputs the message “Hello, Brave New World” to the terminal emulator window.

If errors are encountered in the process, Code Composer Studio detects them and places them in the
build output window. If the error occurred in the compiler or assembler (as in a C syntax error), the cur-
sor may be moved to the offending line by simply double-clicking on the error line within the build out-
put window, and the error message will be displayed in the Code Composer Studio status bar. If the
linker returns a build error, the build output window shows the error file. From this information, the
linker failure can be determined and corrected. For example, if a function name in a call is misspelled,
the linker will fail to resolve the reference during link time and will error out. This error will be dis-
played on the screen in the build output window.

Note: Be sure to start the terminal emulator BEFORE starting Studio, to avoid resetting the DSP target
in the midst of the debugging session. If Terminal is not yet running and you wish to run the Hello
object file, perform the following steps.

1. Execute Debug | Run Free to logically disconnect the DSP from the debugger software.

2. Terminate the Studio application.

3. Invoke the Terminal application.

4. Restart the Studio application.

This outlines the basics of how to recompile the existing sample programs within the Studio environ-
ment.

Anatomy of a Target Program

While not providing much in the way of functionality, the hello program does demonstrate the code
sequence necessary to properly initialization the target. The exact coding, however, is very specific to
the I.I. C Development Environment, target boards, and is explained in this section in order to acquaint
developers with the basic syntax of a typical application program.

Here we examine the M62 version of the hello program example. Although the source is not neces-
sarily identical to that of hello for the other targets, it is typical of the overall structure of the typical
application program designed under the development environment.
 Development Package Manual

Anatomy of a Target Program
/*

* HELLO.C

* Test file/program for target board.

*/

#include "periph.h"

#include "stdio.h"

main()

{

int key;

enable_monitor();

clrscr ();

printf(“Hello World!\n”);

printf(“\nEchoing keystrokes...\n”);

do

{

key = getchar();

putchar(key);

}

while(key != ESC);

monitor();

}

The two lines of the program that being with a “#” are #include statements, which include the header
files for the peripheral and standard I/O libraries. These include prototypes for all the library routines as
well as variable definitions and #define statements for the peripheral memory-mapping addresses.
These #defines are especially important for those who wish to perform direct peripheral access, rather
than using the peripheral libraries.

The enable_monitor() will setup the standard monitor I/O interface. The next two lines perform
the standard I/O function of the program, clearing the terminal emulation screen and printing “Hello,
World” & “Echoing Keystrokes...”. These two lines are where custom code should be inserted.

The following getchar() call simply echoes keys typed at the terminal emulator back to the terminal
display. This routine is also part of the standard I/O library. The program effectively terminates here,
except that interrupts are still active and interrupt handlers (if they had been installed) would still exe-
cute properly.

The hello program is very simple, but it exhibits the basic functionality needed to properly start on
the CPU, as well as the initialization needed to interact with Code Composer Studio and the ter-
minal emulator properly in the development environment.
 Development Package Manual 79

Developing Target Code

80
Use of Library Code

Library routines can be compiled and linked into your custom software simply by making the appropri-
ate call in the source and adding the appropriate library to the linker command file. Refer to the library
reference in this manual for library location information on each function.

In general, user software needs to #include the relevant library header file in source code. The header
files define prototypes for all library functions as well as definitions for various data structures used by
the library functions. The file stdio.h should be included by programs using the standard I/O library,
and the file periph.h should be included if a program uses functions in the peripheral library. The func-
tion definitions in the peripheral library reference note which library a particular function lives in, as
well as the header file, which should be included for that function.

Compiling/Assembling/Linking Outside Code Composer Studio

Under certain circumstances, it may not be possible to use Code Composer Studio macro definitions to
compile inside the editor. COMPILE.BAT, ASSEMBLE.BAT, and LINK.BAT are provided in the
%II_BOARD% directory and may be executed by typing their names followed by the source file on
which they are to operate. For example, the file mycode.c can be compiled by typing

compile mycode

at the DOS prompt. This causes the COMPILE.BAT script to start, which runs the compiler and gener-
ates the file mycode.obj, assuming no errors occurred. The COMPILE.BAT script also searches for
the file mycode.cmd in the current directory. If the linker command file is found, then the linker is
automatically run and the entire executable linked. If the command file is not found, processing stops
with the generation of mycode.obj.

Assembly source (mycode.asm) may be assembled by typing

assemble mycode

where the assembler is called and an object file generated.

Linking can also be performed. In this case the input file is not source code, but a linker command file
(mycode.cmd):

link mycode

This line causes the linker to build the executable mycode.out, again assuming no errors have
occurred during the process. Also, note that the COMPILE.BAT script will automatically link the exe-
cutable if a linker command file of the same name exists.

In all the above cases, if any errors occur, an error file (mycode.err) is generated by the software tools.
The mycode.err file contains the full console output of each of the tools. Any error that is generated by
the tools will be recorded in this file.
 Development Package Manual

The Next Step: Developing Custom Code
The Next Step: Developing Custom Code

In building custom code for an application, I.I. recommends that you begin with one of the sample pro-
grams as an example and extend it to serve the exact needs of the particular job. Since each of the
example programs illustrates a basic data acquisition or DSP task integrated into the target hardware, it
should be fairly straightforward to find an example which roughly approximates the basic operation of
the application. It is recommended that you familiarize yourself with the sample programs provided.
The sample programs will provide a skeleton for the fully custom application, and ease a lot of the tar-
get integration work by providing hooks into the peripheral libraries and devices themselves.
 Development Package Manual 81

Developing Target Code

82
 Development Package Manual

CHAPTER 6 Developing Host Code
 D
This section describes the Innovative Integration Windows host software develop-
ment environment. The environment provides complete support for generating 32-
bit Windows-compatible software, which is capable of controlling and communi-
cating with Innovative Integration’s DSP co-processor and data acquisition cards.
Virtual device drivers (Windows 9x VxD or NT Kernel Mode Driver) and dynamic
link libraries (DLL) are included to provide an easy-to-use, portable low-level
interface for the target hardware. Sample applications show how to call the DLL
functionality and present basic interface examples with guidelines for on processor
card control requirements and data movement.

Host software development is directly supported under the Microsoft Visual C/C++
4.0 environment for generating 32-bit Windows applications. All example applica-
tion programs included in the development package are supplied with Visual C
workspace files, making program modification and regeneration as simple as possi-
ble.

Please Note: Only Windows application development is currently supported by the
Developer’s Package. Foreign operating systems, such as Unix and OS9 are not
currently supported.

Dynamic Link Library

All target interactions takes place through calls to the supplied dynamic link library
(DLL). This library supplies low-level functions for basic target board control,
including processor reset/run state, message passing via the board-specific mailbox
registers, application downloading, and bus master memory locking and access
control.
evelopment Package Manual 83

Developing Host Code

84
The function calls available under the DLL are documented in the appendices. Sample applications
(described below) provide working examples on how to interact with the card via host software.

Sample Host Programs

The DLL is capable of interacting with up to four target DSP boards simultaneously by default (contact
II if more than four targets are required). The DLL maintains a board-specific structure of information
for each target, known as the cardinfo structure. An prototype of the cardinfo structure is located in
the \INCLUDE\HOST\ subdirectory in the CARDINFO.H file. An example is shown below.

//

// cardinfo.h -- definition of CARDINFO structure

//

#ifndef __CARDINFO_H__

#define __CARDINFO_H__

#include "ii_iostr.h" // Common IO Driver/DLL Structures

#include "mailbox.h" // Definition of MAILBOX structures

//

// BoardInfo structure

//

typedef struct _BoardInfo

{

 ULONG ProcessorCount;

 ULONG DLL_Version; // Version ID numbers

 ULONG DrvVersion;

 ULONG TalkerVersion;

 ULONG CellSize; // Target memory cell size, in bytes

 ULONG CtlReg; // Shadow of control register

 ULONG FlashSectorSize; // Size of flash sectors, in bytes

 ULONG FlashDeviceId; // Flash device ID

 ULONG QuietMode; // Don't Display Messages if true

} BoardInfo;

//

// InterruptInfo structure

//

typedef struct _InterruptInfo

{

 ULONG IRQ; // IRQ of attached interrupt

 HANDLE Ring0Event; // Ring 0 event handle

 HANDLE Ring3Event; // Ring 3 event handle

 void (*Vector)(void *); // Virtual ISR function pointer

 void * Context; // Virtual ISR context pointer

 } InterruptInfo;
 Development Package Manual

Dynamic Link Library
//

// SerialInfo structure

//

typedef struct _SerialInfo

{

 LONG In; // Buffer for last character received

 LONG ReadFlag; // True when character received

 LONG MbValue; // Multi-byte value

 LONG MbCtr; // Multi-byte read state

 ULONG RTS_state; // Current state of the RTS output

 LONG Bcr; // Bus control register value for Flash access

 LONG Reading; // TRUE if currently reading a character

 OVERLAPPED RxOverlap; // Info used in asynch input

 OVERLAPPED TxOverlap; // Info used in asynch output

 COMMTIMEOUTS Timeouts; // Info for set/query time-out parameters

 DCB Dcb; // Device control block

} SerialInfo;

//

// CARDINFO structure

//

typedef struct _cardinfo

{

 ULONG Target; // Number of current target

 HANDLE Device; // Handle to Driver for device

 BoardInfo Info; // Board Info

 MAILBOX * Mail; // Talker Mailbox Array

 IoPortBlock Port; // Primary Port Block Information

 IoPortBlock OpReg; // Secondary Port Block Information

 MemoryBlock DualPort; // Shared Memory Area Information

 MemoryBlock BusMaster; // BusMaster Memory Information

 nterruptInfo Interrupt; // Interrupt Information

 SerialInfo Serial; // Serial Port I/O (SBC's)

} CARDINFO;

#endif

The cardinfo structure is accessed within Host application programs in order to gain access to
board-specific parameters which are maintained by the DLL. For example, in order to ascertain the size
of the shared memory area on a specific target card a host program could use:

/* send bus mastering physical address to target processor */

dsp = (CARDINFO*)target_cardinfo(target);

size = dsp->Dualport.Size;
 Development Package Manual 85

Developing Host Code

86
Sample Host Programs

Each Zuma Toolset is supplied with one or more example programs which illustrates control of the DSP
board via the supplied DLL. For bus-based boards, the example is SCOPE.C, which emulates a simple
oscilloscope. For stand-alone boards, the XRPT.C example is provided, which illustrates advanced
serial communications. The SCOPE example

SCOPE.C is a small, working example written in Visual C v4.0 showing how to use bus-based DSP
boards to move data between the target and Host memory spaces. The host application works in concert
with a small DSP program running on the target to mimic the operation of a simple oscilloscope.

The SCOPE application is included in the \EXAMPLES\HOST\SCOPE subdirectory of
%II_BOARD%. Its executable is located in the \EXAMPLES\HOST\SCOPE\RELEASE subdirectory.
The DSP support code for this application is located in the \EXAMPLES\HOST\SCOPE\DSP subdi-
rectory.

SCOPE.C is a multi-threaded application example with three threads. The primary thread performs
Window management, including the Windows message handler. A second thread, EnqueueData()
handles data movement from the target DSP to the Host using shared memory (dual port memory on
ISA bus cards and bus master memory on PCI cards). The third thread, PlotData(), plots the
enqueued data received from the target within the window.

This program illustrates many of the elements of a typical Host application, which communicates with a
target DSP application. In this example, the Host program communicates closely with the SCOPE.C
DSP application located in the \EXAMPLES\HOST\SCOPE\DSP directory. SCOPETRG.C is the
code which runs on the target DSP and is responsible for feeding information to the Host via shared
memory.

When the Host program starts, it invokes the COFF downloader to download the object image of the
target DSP application (SCOPETRG.OUT) within the download() procedure. This procedure
makes calls on the DLL in order to effect the download. Following the download, the application is
started running using the start_app() function. The DSP application immediately begins generat-
ing mock analog data in order to emulate acquiring data from the analog subsection on the target,
enqueuing the acquired data. As soon as a packet-full of data is available, the data is dequeued by the
target, moved into shared memory and the Host program is signalled, using the host_interrupt()
target procedure.

The Host device driver handles the target interrupt signal and issues an special EVENT message to the
ring three DLL which performs a callback on the user-installed Host EnqueueData() function.
When this occurs, the offset into dual port memory containing the new packet of analog samples is read
from the shared memory. This address is used to enqueue data from shared memory area into a Host-
maintained data queue of real-time analog samples.

The Host PlotData() thread draws an oscilloscope-like grid on the display window, then polls con-
tinuously for the availability of analog samples in the Host queue. When a screenfull of data is avail-
able in the queue, it is dequeued and plotted.
 Development Package Manual

Dynamic Link Library
The primary thread is responsible for handling window messages only. The most typical window mes-
sages are invoked when the user drags or resizes the oscilloscope window. When this occurs, the
WM_SIZE message handler sets the global variable refresh TRUE, which indicates to the Plot-
Data() thread that a complete window update is needed. The PlotData() function temporarily
drops out of the data plotting loop in order to redraw the oscilloscope display. Then, it resumes the plot-
ting function again, until the refresh variable is modified again.

The XRPT Example

XRPT.C is a small, working example written in Visual C v4.0 showing how to use serial-based DSP
boards to move data between the target and Host memory spaces. The host application works in concert
with a small DSP program running on the target to tally the number of target-to-host interrupts signalled
by the DSP during application execution. Like the SCOPE example for bus-based DSPs, XRPT illus-
trates installation of a Host interrupt handler using DLL calls. This interrupt handler is invoked by the
target DSP via the host_interrupt() function call, which in the case of single-board targets initiates a
delta-CTS interrupt to the Windows device driver, which signals and event to the II DLL which calls
back the user-installed interrupt function.
 Development Package Manual 87

Developing Host Code

88
 Development Package Manual

CHAPTER 7 Creating Target Software
 D
Software is created for the target DSP by using one or more of the tools included in
the Developer’s Package. The tools can be used alone or in concert with each other
to generate a downloadable executable COFF format file, which can be run on the
target DSP board with the aid of the utilities included in the developer’s package.

This section of the Developer’s Package Manual details the use of the individual
tools in the package to create executables for the target DSP. This section also
gives step-by-step instructions on how to use the C compiler and Code Composer to
write, compile, test, and debug custom C applications on the target. Sample C
applications are also discussed

C Code Development

C Compiler

The Texas Instruments C compiler is an ANSI C compatible compiler, which pro-
duces optimized assembly code for the TMS320C4x family of processors. A com-
plete set of manuals is included with the M62 Developers Package.

In addition to the excellent manuals from TI, refer to the Kernighan and Ritchie C
Handbook (available at cost from I.I.) for generic C questions and syntax. The TI
manuals primarily describe the use of the compiler with the TMS320C4x family
and are not intended as C primers for the beginner.
evelopment Package Manual 89

Creating Target Software

90
C Library Reference

Complete source code to the entire suite of ANSI C libraries is provided with the C system to aid in
code development. Refer to the TMS320 Floating Point DSP Optimizing C Compiler Manual for a
complete list of TI C functions.

The I.I. M62 Developer’s System also includes extensive high-level libraries useful in interacting with
the various peripherals on the M62 board. The following sections describe by peripheral type the func-
tions provided in the peripheral library. For a complete alphabetical listing of all peripheral functions,
see Appendix.

M62 Zuma Toolset Libraries

The Zuma toolset provides both target peripheral libraries and Host DLLs along with numerous exam-
ple programs to illustrate usage.

The peripheral libraries for the M62 provide support for the on-board peripherals and terminal I/O func-
tions. The libraries are provided in three linkable .LIB files: PERIPH.LIB, STDIO.LIB, and
DSP.LIB. STDIO.LIB holds all the console terminal emulation and communications routines listed
in the following section, while PERIPH.LIB contains all other peripheral driver routines. DSP.LIB
contains commonly requested C-callable digital signal processing functions, plus common math and
queue management extensions. Source code for the routines is also provided, arranged by function in
the \PERIPH, \STDIO, and \DSP subdirectories of the root II_BOARD directory, as follows:

TABLE 5. Zuma Toolset Source Directories

The toolset also contains various support files arranged as described below.

Directory Library Source
\DSP Standard Digital Signal Processing Routines.
\PERIPH\ANALOG Drivers for the M62 A4D4 instrumentation-grade analog I/O module

and the complementary TERM mux module.
Drivers for the SD high-performance audio module.

\PERIPHERAL\BUS Drivers for V360 bus-mastering PCI interface.
\PERIPH\DIGITAL Digital I/O, PIT Timer control, module FLASH ROMs, etc.

Drivers for DIO module.
Drivers for MOT motion control module.

\PERIPHERAL\DIO DIO module DUART and digital I/O drivers.
\PERIPH\MISC Miscellaneous processor control and data conversion functions.
\PERIPH\RTS Modified boot-up routines for the M62 baseboard.
\STDIO Console and terminal emulation functions.
\TALKER Start-up umbilical ‘C6201 software.
 Development Package Manual

C Code Development
TABLE 6. Zuma Toolset Support Subdirectories

STDIO Console Terminal Driver. The Developer’s Package contains a full-featured terminal emulator
application (terminal.exe), suitable for both user interface purposes as well as debugging use. The
peripheral library provides a complete set of standard I/O routines, which can communicate directly
with this terminal emulator. The source for the standard I/O routines is given in the \STDIO subdirec-
tory under the installation directory. In general, the standard I/O library functionality is identical to that
of the K&R standard I/O library. However, some M62-specific functions are provided to allow higher
level functionality such as cursor positioning, text attribute control, and graphical data plotting. The
following target programming section gives details on how to use the standard I/O peripheral library to
interact with the terminal emulator.

Digital Peripheral Drivers. The digital peripheral drivers control the ‘C6201 internal timers and the
digital I/O lines. These drivers allow for high-level access to timebase control functions and digital I/O
activity without doing direct hardware programming. The following target programming section gives
details on how to use the digital peripheral library to program the digital peripherals. Source code for
the functions is given in the \PERIPH\DIGITAL directory.

BUS Peripheral Drivers. The BUS peripheral drivers provide control functions for the onboard V360
PCI bus interface. The available routines support very-high speed bus-mastering transfers between the
512 Kbyte, external async SRAM of the M62 and host PC memory. This driver also includes hardware
mailbox support routines, which are used extensively by the standard I/O library in order to support ter-
minal emulation. Additionally, these mailbox routines provide a means of performing interrupt-driven
communications with the Host PC. The target programming section gives details on how to use the bus
peripheral library. Source code for the functions is given in the \PERIPH\BUS directory.

Miscellaneous Peripheral Drivers. The MISC directory contains code to support high-level access to
the internal registers, byte packing and unpacking, interrupt vector support, and other functions. Source
code for the functions is given in the \PERIPH\MISC directory.

RTS Peripheral Drivers. The RTS peripheral drivers provide board-specific versions of the functions
called by the TI C Compiler during coldstart initialization of the C runtime engine. These files have
been modified as necessary in order to provide a complete initialization of the M62 onboard hardware
immediately prior to calling main() within application code. Additionally, the RTS functions include
a modified version of the millisecond timer function required to support the TI C timekeeping functions
(listed in time.h). Source code for the functions is given in the \PERIPH\BUS directory.

Directory Library Source
\EXAMPLES\HOST Example programs illustrating use of the DLL to control the DSP

board from within MS Visual C programs.
\EXAMPLES\TARGET Example programs illustrating use of the target peripheral libraries to

perform common DSP tasks.
\INCLUDE\HOST Header files used by Host Visual C programs.
\INCLUDE\TARGET Header files used by target Texas Instruments C programs.
\LIB\HOST Linkable library files for Host Visual C and C++ programs.
\LIB\TARGET Linkable library files for target TI C and assembler programs.
\SRC Useful public domain source files for the C6201 processor.
 Development Package Manual 91

Creating Target Software

92
Digital Peripheral Drivers. The digital drivers support access to all baseboard and add-on digital I/O
functions.

The DIO peripheral drivers provide control functions for the optional DIO plug-in module. The func-
tions provide high-level C access to the DIO module’s 32, additional digital I/O lines, plus either inter-
rupt-driven or polled use of the DIO’s onboard DUART (Dual-channel Universal Asynchronous
Receiver Transmitter). The target programming section gives details on how to use the digital periph-
eral library to program the digital peripherals. Source code for the functions is given in the
\PERIPH\DIGITAL\DIO directory.

The MOT peripheral drivers provide control functions for the optional MOT plug-in module. The func-
tions provide high-level C access to the MOT module’s four, precision motion-control axes. Each of the
axes features independent encoder inputs and either digital or 16-bit analog output. Digital output may
be either pulse and direction positive or negative pulse to support stepper motor amplifier inputs. The
target programming section gives details on how to use the MOT peripheral library to program these
peripherals. Source code for the functions is given in the \PERIPH\DIGITAL\MOT directory.

Analog Peripheral Drivers. The Analog peripheral drivers provide control functions for the optional
analog plug-in modules: A4D4, AIX, and SD modules. The functions provide high-level C access to
the A4D4’s analog input and output channels and their associated gain amplifiers. Additionally, the
driver supports control of the optional TERM break-out panel, a companion to the A4D4 module. In
order to support muxing of each of the A4D4 modules 8:1 to allow input from up to 32 simultaneous
channels per A4D4 module. Source code for the functions is given in the \PERIPH\ANALOG\A4D4
directory.

The AIX peripheral drivers provide control functions for the optional AIX plug-in module. The func-
tions provide high-level C access to the AIX module’s four, 2.5 MHz, 16-bit analog input channels.
Source code for the functions is given in the \PERIPH\ANALOG\AIX directory.

The SD peripheral drivers provide control functions for the optional SD plug-in module. The functions
provide high-level C access to the A4D4 module’s four, audio-grade, 24-bit analog input and 20-bit out-
put channels. Source code for the functions is given in the \PERIPH\ANALOG\SD directory.

The target programming section gives details on how to use the analog peripheral library to program
these analog peripherals.

Digital Signal Processing Library. The DSP directory contains code to support high-level access to
the common signal processing functions such as FFT’s, filters and compression. Additional routines are
provided for common functions such as matrix manipulation, curve fitting and general purpose queue
management. Source code for the functions is given in the \DSP directory.

Texas Instruments C Libraries. Several libraries are included with the system that provide support for
floating point and extended math functions, DSP oriented procedures and initialization examples.
Chapter 5 in the TMS320 Floating Point DSP Optimizing C Compiler User’s Guide describes the librar-
ies.
 Development Package Manual

C Code Development
The following libraries are available:

TABLE 7. Texas Instruments Standard Library Functions

M62 Hardware Interaction

All peripherals are memory mapped into the ‘C6201 address space, using the locations given in the fol-
lowing table. The table also lists the wait states applied to accesses to each peripheral.

The development system provides routines to access all integrated M62 peripherals. This section
describes how to program the peripherals using the supplied library functions under C or via direct
memory accesses to the supplied peripheral register map. In general, direct memory access delivers
higher performance than using the C function library since it avoids the overhead of the function calls
necessary to access the library. However, the libraries have been crafted to utilize inline code where
possible to mitigate this effect. In the peripheral descriptions that follow, each device’s access methods
are called out for both high level and direct memory access. In the case of C functions, the function
names and argument variables are called out. In the case of direct memory access operations, the rele-
vant addresses are listed along with the functions they perform and accompanying Periph structure
elements which may be used from C to simplify access. These elements are defined in the header file
periph.h.

Library Operation
ASSERT.H Defines the assert macro for runtime error message reporting.
CTYPE.H Declares functions that test and convert characters.
LIMITS.H Defines range limits for characters and variable types.
FLOAT.H Defines floating point range limits.
MATH.H Defines trigonometric, exponential and hyperbolic math functions.
ERRNO.H Defines errno variable for catching range errors in function calls.
STDARG.H Defines macros to aid in variable argument functions.
STDDEF.H Defines two new types and macros used within runtime functions.
STDLIB.H Declares many common library functions such as string conversion, sorting and

searching functions, program exit functions and some integer-arithmetic that is
not a standard part of C.

STRING.H Declares functions for string manipulations.
TIME.H Declares macros and types useful for time manipulations.
 Development Package Manual 93

Creating Target Software

94
TABLE 8. M62 External Peripheral Memory Map

This section does not describe peripheral hardware specifications and other hardware issues. Refer to
the M62 Hardware section of this manual for additional hardware information.

Digital Input/Output

The digital input/output (I/O) buffers provide a means for generating 32 bits of direct digital input or
output to and from external hardware. This I/O can be clocked from either the ‘C6201 processor or
from external TTL sources, allowing external devices to automatically latch data into the I/O buffers for
the ‘C6201 to read.

Input/output direction for either half of the 32-bit port may be programmed on the fly using on-board
logic. The port may be configured in the software for input or output in groups of eight bits.

Function Address C Language Mneumonic Mem Space
FIFO Port 0x0400000 Periph->Fifo CE0
V360 Registers 0x1400000 Periph->PciRegs CE1
FIFO Port Reset 0x1410000 Periph->FifoReset
AD9850 Reset 0x1470000 Periph->DDS.Reset
AD9850 Frequency Update 0x1480000 Periph->DDS.Update
AD9850 Write Clock 0x1490000 Periph->DDS.Clock
Digital I/O Data Register 0x14A0000 Periph->Dio.Data
Digital I/O Direction Control 0x14B0000 Periph->Dio.Direction
Digital I/O Input Latch Clock Control
Register

0x14C0000 Periph->Dio.LatchControl

External Mux Control 0 0x14D0000 Periph->Mux[0]
External Mux Control 1 0x14E0000 Periph->Mux[1]
16 bit External Timer 0x14F0000 Periph->Timer
External Interrupt Input 4 Select 0x1500000 Periph->EI[4]
External Interrupt Input 5 Select 0x1510000 Periph->EI[5]
External Interrupt Input 6 Select 0x1520000 Periph->EI[6]
External Interrupt Input 7 Select 0x1530000 Periph->EI[7]
I/O Module Strobe 0 0x1540000 Periph->Module[0]
I/O Module Strobe 1 0x1550000 Periph->Module[1]
I/O Module Strobe 2 0x1560000 Periph->Module[2]
I/O Module Strobe 3 0x1570000 Periph->Module[3]
I/O Module Strobe 4 0x1580000 Periph->Module[4]
I/O Module Strobe 5 0x1590000 Periph->Module[5]
I/O Module Strobe 6 0x15A0000 Periph->Module[6]
I/O Module Strobe 7 0x15B0000 Periph->Module[7]
I/O Module Strobe 8 (cM62 only) 0x15C0000 Periph->Module[8]
I/O Module Strobe 9 (cM62 only) 0x15D0000 Periph->Module[9]
I/O Module Strobe 10 (cM62 only) 0x15E0000 Periph->Module[10]
I/O Module Strobe 11 (cM62 only) 0x15F0000 Periph->Module[11]
Async SRAM (128Kx32) 0x1600000 Periph->ASRam[0..0x80000]
SDRAM (16Mbyte) (optional) 0x2000000 Periph->SDRam[0..0x1000000] CE2
SBSRAM (1Mbyte) (optional) 0x3000000 Periph->SBRam[0..0x100000] CE3
 Development Package Manual

C Code Development
Memory Mapped Digital I/O Access. The following table shows the memory locations used to inter-
act with the digital I/O buffers. Three C language routines are supplied to interact with the digital I/O
port.

TABLE 9. Digital I/O Access Memory Location

The Periph->Dio.Data location is used to access the data lines of the digital I/O port. Results of
read and write accesses depend on the I/O direction of the port (see below for information on setting the
port direction). If the port is configured for input, a read access latches new read data from the external
pins and the new data is read into the ‘C6201. If the port is configured for output, the most recently
latched output data is read into the ‘C6201 (output data does not change). Write accesses to an input
port cause no change to the port status, while write accesses to an output port cause the new data to be
latched and output to the external I/O pins.

The Periph->Dio.Direction location controls the direction of each byte of the digital I/O port.
The four least significant bits of this register are used to configure each of the bytes of the digital I/O
port for either input or output, as follows:

TABLE 10. Table 17: Digital I/O Direction Configuration

The Periph->Dio.LatchControl location controls the method of latching data into each byte of
the digital I/O port. The four least significant bits of this register are used to configure the latch method
as either internal (triggered by CPU accesses) or external (triggered by an external TTL pulse), as fol-
lows:

Function C Language Mnemonic
Digital I/O Data Register Periph->Dio.Data

Digital I/O Direction Control (4 bytes) Periph->Dio.Direction

Digital I/O Latch Control Periph->Dio.LatchControl

Dio.Direction-
Register Bit #

Value Direction

0 0 DX[0..7] output (default)
1 DX[0..7] input

1 0 DX[8..15] output (default)
1 DX[8..15] input

2 0 DX[16..23] output (default)
1 DX[16..23] input

3 0 DX[24..31] output (default)
1 DX[24..31] input
 Development Package Manual 95

Creating Target Software

96
TABLE 11. Digital I/O Latch Configuration

C Language Digital I/O Functions. Data may be read or written to the digital I/O port using the fol-
lowing routines in the DIGITAL support library.

TABLE 12. Digital I/O Library Functions

Timers

The timers provide the capability to generate hardware timebases, which can be used to trigger proces-
sor interrupts, analog signal conversions, or as direct outputs to external hardware. There are a total of
six timebase sources built in to the M62: two 32-bit timers internal to the ‘C6201 processor, and three
16-bit channels implemented with custom logic within the FPGA plus one AD9850 direct digital syn-
thesizer. The supplied library functions initialize the timers to a free-running, pulse generation mode
suitable for generating convert pulses to the analog hardware.

The timers are initialized by code in the timebase() routine each time it is called. Normally, no
other function calls are necessary to use the timers. However, when supplying an external TTL signal to
the ‘C6201 TCLK0/1 inputs in order to provide an external timebase to analog circuitry, it will be nec-
essary to create and use a custom version of timebase(), which tristates the TCLK output driver to
avoid contention with external sources. Please note that certain hardware setups might be required
depending on the application. See the M62 Hardware section of this manual for more details on how to
set up the M62 board.

Dio.LatchControl-
Register Bit #

Value Bits Affected Clock Source

0 0 0..7 Internal (CPU-based)
1 External

1 0 8..15 Internal (CPU-based)
1 External

2 0 16..23 Internal (CPU-based)
1 External

3 0 24..31 Internal (CPU-based)
1 External

Function Name Description

DIO_dir() Sets the direction of all four bytes of the onboard 32-bit
digital I/O port.

DIO_read() Returns current state of all 32-bits of digital I/O port.
DIO_write() Sets current state of all 32-bits of digital output port cur-

rently configured for output.
DIO_latchcontrol() Sets the latch method of all four bytes of the onboard 32-

bit digital I/O port.
 Development Package Manual

C Code Development
C Language Timer Functions. The following functions give high-level access to the timer hardware.
See the appendices for complete information on the functions.

TABLE 13. C Language Timer Functions

timebase() can be used to set a particular timebase to a particular frequency. For example, the fol-
lowing call sets PIT timer channel 1 to generate a 1000 Hz output pulse stream, assuming the hardware
default 1 MHz input clock to the FPGA logic:

timer(1, 1000.0, 1.0);

Memory Mapped Timer Access. It is possible to directly access to the internal timer hardware con-
trols via memory mapped registers at specific addresses. It may be necessary to use these addresses to
set the timers to a custom mode. In general, unless custom functionality is required of the timers, it is
recommended that the user exclusively access the timers via the timer() routine rather than program-
ming the control and period registers manually.

For information about the ‘C6201 internal timers, please see the TMS320C6x User’s Guide. For addi-
tional information about the custom PIT counter/timer device, contact Innovative Integration. For an
example of direct timer channel control, refer to the source code for the timebase() function, located
in the PERIPH\DIGITAL subdirectory.

STDIO Communication. C stdio terminal emulation is provided in the Peripheral Library. The stdio
library communicates with the host TERMINAL.EXE program via the V360 PCI interface mailbox reg-
isters to provide stdio support to DSP applications running on the M62. The stdio interface may be used
for real-time, non-intrusive software debugging or to create a basic user interface for OEM applications.

The following list shows the available Peripheral Library calls and their operation. See the Appendix
for complete information on the functions.

Function Name Operation
timebase() Configures a specified timer channel (0..5) l for periodic counting at a

specified frequency using a specified source clock rate.

Function Name Operation
putchar() Emits an 8-bit character to the terminal emulator
getchar() Gets an 8-bit character from the terminal emulator’s keyboard

buffer
gets() Inputs a string into a target buffer
puts() Displays a string from a target buffer
sprintf() Formats a string into a memory buffer pointed to by buffer
printf() Prints a formatted string to the terminal
scanf() Inputs a formatted string from the terminal into a buffer
sscanf() Converts a formatted string in memory into a buffer
stdio_reset() Resets the terminal emulator display
fopen() Opens a file on the Host PC, returning the file handle
fclose() Closes a previously opened Host PC file.
fread() Reads file contents into a target buffer
fwrite() Writes a target buffer into a Host PC file
 Development Package Manual 97

Creating Target Software

98
TABLE 14. STDIO Driver Functions

Using Interrupts. The M62 supports four external and numerous internal hardware interrupts. These
include EI0, EI1, EI2, EI3, plus TINT0, TINT1 (internal timer/counters), internal com. port transmit
and receive and DMA.

Interrupts on the TMS320C6201 may be handled by writing either high-level C or assembly language
procedures within your application files, which employ the following interrupt-specific function names:

void c_intNN() for C handlers or

_c_intNN for assembly language

where NN is numbered 0 through 99 for each of the interrupts. For each interrupt, a procedure must be
coded, which will be executed upon acknowledgment of interrupt NN by the 'C6201. This is described
in more detail in the C Compiler Users Manual.

Consider the following code example:

/*

* EXAMPLE.C

*/

#define TINT0 14

main()

{

fseek() Repositions the Host PC file pointer
ferase() Erases the specified Host PC file
kbd_hit() Returns a nonzero value if characters are currently available in

the monitor keyboard buffer
kbd_key() Returns 16-bit IBM scancode for pending keystroke from the

terminal emulator’s keyboard buffer.
gotoxy() Moves the terminal cursor
wherexy() Returns the terminal cursor position
clreol() Clears to end of current line
clrscr() Clears the terminal screen
type() Types formatted, null terminated string to console
bold() Enables bold text attribute in terminal emulator
normal() Enables standard text attribute within terminal emulator
get_attribute() Returns the current character display attributes
set_attribute() Sets the current character display attributes
cursor() Enables/disables the cursor
get_busmaster_addr() Obtains the base of the host busmaster memory from the termi-

nal emulator.
plot() Plots a Host PC file as a graph.
view() Plots a target buffer as a graph.
 Development Package Manual

C Code Development
 enable_interrupts(); /* Enable unmasked xrpts */

 timebase(1, 1000.0, 1.0); /* Internal timer 1 at 1kHz */

/* install interrupt handler on TINT1 */

 install_int_vector(c_int02, TINT0);

 enable_interrupt(TINT0);

.

 /* Bulk of application */

.

disable_interrupt(TINT0); /* Disable TINT0 xrpt */

}

/*

* ISR for timer 0 - Tally a variable

*/

int milliseconds

void c_int14()

{

milliseconds++; /* Internal timer 0 is used to */

} /* synthesize a timebase */

In this code, the internal timer 0 is configured to output a pulse every millisecond, which drives TINT0
on the ‘C6201. The vector is installed into the jump table with a call to install_int_vector()
and the bit associated with TINT0 in the interrupt enable register, is enabled. Finally, main() calls
enable_interrupts() which, sets the global interrupt enable bit so that all unmasked interrupts
can be processed.

Each time the counter expires, the routine c_int14() executes. In this example, the variable mil-
liseconds is incremented during each interrupt service cycle.

Each DSP application should include a copy of the default interrupt vector table, which is defined in
vectors.asm. This assembly file is located in the PERIPH\RTS directory. When it is compiled
into a .obj file and linked into the application, it will cause all entries in the vector table to be initial-
 Development Package Manual 99

Creating Target Software

100
ized with a default handler. The one exception being the break interrupt vector, which is filled with the
pointer to the talker program. If an application needs to make use of interrupts, those vectors which are
affected need to be changed with install_int_vector() at run time.

See the target example programs provided on your distribution disks for further examples of the use of
interrupts.

Example Target Programs for the M62

The following section details the example target software included with the Developer’s Package.
These programs are provided as models for custom user software, and it is highly recommended that the
user examine these examples before beginning a first development effort for the target DSP. Full source
code is provided for user inspection and reuse in modified or custom applications.

These examples will run on a standard M62 card with no additional hardware required.

HELLO

HELLO is a very simple introduction to basic program components and use of the C stdio library for the
target card. When run with the host terminal emulator active, the program simply initializes the target
hardware and stdio interface and prints the message “Hello, World” via the stdio library to the terminal
emulator screen. The program then drops into an infinite dwell loop.

HELLO may be rebuilt from with in the Code Composer Studio environment by loading the
HELLO.MAK project from the \target\examples directory. Then, modifying the source file HELLO.C,
and rebuilding the project (see the Code Composer Studio documentation for more information on the
application’s project management and make facilities).

For correct program functionality, it is necessary to run the HELLO application via the host terminal
emulator program. If the terminal emulator is not active and communicating with the target M62 card
on which HELLO is running, the application will appear to hang at the first instance of a stdio function
call (usually a getint() or putint() call). This is due to the fact that all stdio calls use the M62
bus mailbox interface and are handshaken with the host terminal emulator application. Any such calls
will hang if the terminal emulator is not active to complete the communication link.

TEST

TEST is board level hardware test program, which is capable of accessing the major peripherals on the
M62 to double-check proper hardware functionality. As such, it contains routines for exercising each of
the peripherals on the M62, including:
 Development Package Manual

Example Target Programs for the M62
1. Digital I/O

2. Internal timers

3. External timers

4. Communications Ports

Since the TEST program aims to be all-encompassing in that it tries to test as much of the board-level
functionality as possible, it serves as a poor example for complicated operations such as A/D multi-
channel sampling and display. However, since the code included for TEST is broken down into func-
tional pieces, which are called separately for each subsystem to be tested, it is possible to factor out
individual tests for use in other programs.
 Development Package Manual 101

Creating Target Software

102
 Development Package Manual

CHAPTER 8 Target DSP Peripheral
Libraries
 D
Target Functions by Category

Category Name Description
Board Initialization &
System Functions

baud Set baud rate on current serial port

cpu Set CPU number and mailbox
cpu_num Get CPU number
cpu_number Get CPU number (inline)
detect_cpu_speed Derive DSP clock speed
dma_done Wait for DMA completion
dpram_addr Return start address of Dualport RAM

on PC31
dpram_type Detects 16 or 32 bit Dualport RAM on

PC31
init_serial Initialize the serial I/O system
InitIP Initialize Industry Pack access struc-

ture
mem_size Detect size of memory space
test_mem PC31 memory check

Busmaster Transfer
Functions

bm_init Busmaster transfer initialization

bm_transfer General busmaster transfer
fifo_init Busmaster initialization
transfer_complete Wait for Busmaster transfer to com-

plete
USB Bulk Transport
Interface Functions

InitBulkTranport Initialize the Bulk Transport Interface

StopBulkTransport Shut down the Bulk Transport Inter-
face

IsBulkTransportReady Returns true if system can send data
OpenBulkTransport Opens a channel of the Bulk Transport

System
evelopment Package Manual 103

Target DSP Peripheral Libraries

104
CloseBulkTransport Shuts down an open channel of the
Bulk Transport System

ReadBulk Read a block from a Bulk Transport
channel

WriteBulk Writes a block to a Bulk Transport
channel

BulkDataAvailable Returns the amount of data available
for reading on a channel

BulkSpaceAvailable Returns the room for new data avail-
able on a channel

FlushBulk Forces the transmission of all data in a
channel

Digital I/O Functions C31_dig_dir Program the direction of PC31/SBC31
PIA Digital I/O bytes

C31_read_dig Read PC31/SBC31 PIA Digital I/O
lines

C31_write_dig Write to PC31/SBC31 PIA Digital I/O
lines

C31_write_dig_bit Update a single bit on PC31/SBC31
PIA Digital I/O

dig_dir Program the direction of Digital I/O
bytes

read_abits Read state of ABITS output lines
read_abits_bit Read state of a single ABITS output

bit
read_dig Read Digital I/O lines
read_dig_bit Read state of a single digital bit
write_abits Write to ABITS digital output
write_abits_bit Update a single ABITS digital output

bit
write_dig Write to digital output
write_dig_bit Update a single digital output bit

Analog I/O Control
Functions

enable_analog Initialize analog subsystem

trigger_adc Set triggering mode for an ADC
trigger_adc_pair Set triggering mode for an ADC pair
trigger_dac Set triggering mode for an DAC
trigger_dac_pair Set triggering mode for an DAC pair
write_analog_interrupt_mask Set which analog conversions fire

interrupts
Analog Input Functions correct_adc Adjust ADC reading to proper range

correct_adc_pair Adjust a pair of ADC readings to
proper range

convert_adc Manually trigger an ADC conversion
convert_adc_pair Manually trigger an ADC conversion

on an ADC pair
read_adc Read data from ADC
read_adc_pair Read data from a pair of ADCs
read_adc_automux Read data from ADC, and switch mul-

tiplexer
read_adc_pair_automux Read data from a pair of ADCs, and

switch mux
Analog Output Func-
tions

correct_dac Adjust DAC reading to proper range

correct_dac_pair Adjust a pair of DAC readings to
proper range

convert_dac Manually trigger a DAC conversion
 Development Package Manual

convert_dac_pair Manually trigger a DAC conversion
on a DAC pair

convert_dacs Manually trigger DAC conversions
using a bit mask

read_dac Read last value loaded into a DAC
read_dac_pair Read last value loaded into a DAC

pair
update_dac Write DAC value and automatically

trigger conversion
update_dac_pair Write DAC pair and automatically

trigger conversion
write_dac Write value to DAC
write_dac_pair Write value pair to a DAC pair

Programmable Gain
Functions

gain_to_mode Convert Gain into equivalent Gain
Mode number

mode_to_gain Convert gain mode to actual gain
value

read_gain Read last Gain setting
write_gain Update gain setting for a channel
write_gains Update gain setting for all channels

Mux Control Functions auto_mux Configure automatic multiplexing fea-
ture

read_mux Read last setting of a particular mux
write_mux Update multiplexer setting for a chan-

nel
write_muxes Update multiplexer setting for all

channels
Mailbox and Sema-
phore Functions

check_inbox Check incoming mailbox for new data

check_outbox Check outgoing mailbox for new data
clear_mailboxes Clear mailboxes
get_semaphore Get hardware semaphore
read_mailbox Read from incoming mailbox
read_mb_terminate Read from incoming mailbox if data

available
release_semaphore Release hardware semaphore
write_mailbox Write to outgoing mailbox
write_mb_terminate Write to outgoing mailbox if box is

ready
Interrupt Support Func-
tions

deinstall_int_vector Remove vector from vector table

disable_interrupt Disable specific interrupt
enable_interrupt Enable specific interrupt
host_interrupt Target to host interrupt
install_int_vector Install vector into vector table
mailbox_interrupt Post a mailbox interrupt to the host
mailbox_interrupt_ack Acknowledge a mailbox interrupt
mailbox_interrupt_deinstall Unload the handler for mailbox inter-

rupts
mailbox_interrupt_disable Disable mailbox interrupts
mailbox_interrupt_enable Enable mailbox interrupts
mailbox_interrupt_install Load a handler for mailbox interrupts
suspend Idle until interrupts arrive
interrupt_cpu Interrupt specified multiprocessor tar-

get CPU
cpu_int_src Return source code # for specified

multiprocessor CPU
 Development Package Manual 105

Target DSP Peripheral Libraries

106
cpu_xrpt_bit Return register index to specified mul-
tiprocessor CPU

Timer Functions disable_clock Disable system millisecond timebase
enable_clock Initialize system millisecond timebase
ms Dwell milliseconds
read_timer Read value from a hardware timer
timebase Set hardware timer frequency
timer Set hardware timer frequency
uclock Get system millisecond timer value
us Dwell microseconds

Memory Movement
Functions

copy_mem Fast on-chip memory copy

fill_mem Fast on-chip memory fill
mem_to_port Fast on-chip transfer of data to a port
port_to_mem Fast on-chip transfer of data to a port
dma_copy_mem Fast DMA memory copy
dma_fill_mem Fast DMA memory fill
dma_mem_to_port Fast DMA transfer of data to a port
dma_port_to_mem Fast DMA transfer of data to a port

Conversion Functions from_ieee Convert from IEEE-754 floating point
format

packb Pack byte value into int
packh Pack half word value into int
to_ieee Convert to IEEE-754 floating point

format
unpackb Unpack byte values from int
unpackh Unpack half word values from int

Flash Memory Pro-
gramming

fast Restore PBCR to original value after
Flash access

flash_erase Erase entire Flash memory
flash_init Initialize Flash for programming
flash_rd Read Flash byte
flash_read Read 32-bit word from Flash
flash_sector_erase Erase a Flash sector
flash_wr Write a byte to Flash memory
flash_write Write 32-bit word to Flash
slow Reduce speed of I/O accesses to

access Flash memory
CPU Register I/O clear_interrupt_flag Disable interrupt enable bit

get_DIE Retrieve 320C4x DIE register
get_IE Retrieve 320C3x IE register
get_IIE Retrieve 320C4x IIE register
get_IF Retrieve 320C3x IF register
get_IIF Retrieve 320C4x IIF register
get_IOF Retrieve 320C3x IOF register
get_ST Retrieve 320C3x/4x Status register
set_DIE Set 320C4x DIE register
set_IE Set 320C3x IE register
set_IF Set 320C3x IF register
set_IIE Set 320C4x IIE register
set_IIF Set 320C4x IIF register
set_IOF Set 320C3x IOF register
set_interrupt_flag Set ‘C3x Interrupt Flag Bit
set_PC Set processor program counter
set_ST Set processor status register
 Development Package Manual

FIFO Library Functions

FIFO Link Support set_fifo_link_AF_levels Set almost-full threshold levels
fifo_link_emit Send a character to link using handshake
fifo_link_key Get a character from link using hand-

shake
fifo_link_spit Send a character to link without using

handshake
fifo_link_eat Get a character from link without using

handshake
bleed_fifo_link Drain FIFO into memory buffer
fill_fifo_link Fill FIFO from memory buffer
reset_fifo_link Initialize a link to empty state
get_fifo_link_status Obtain fullness state information
login() Query subordinate processors for login

sequence
sub_login Send login sequence to master processor
fifo_link Return register index to FIFO link for

specified CPU
FIFO Port Support set_fifo_port_AF_levels Set almost-full threshold levels

fifo_port_emit Send a character to link using handshake
fifo_port_key Get a character from link using hand-

shake
fifo_port_spit Send a character to link without using

handshake
fifo_port_eat Get a character from link without using

handshake
bleed_fifo_port Drain FIFO into memory buffer
fill_fifo_port Fill FIFO from memory buffer
reset_fifo_port Initialize a link to empty state
get_fifo_port_status Obtain fullness state information
 Development Package Manual 107

Target DSP Peripheral Libraries

108
Standard I/O Library Functions

Category Name Description
Console Terminal Control
Functions

bold Set console text bold attribute

clreol Clear console to end of line
clrscr Clear console screen
cursor Enable/disable console cursor
get_attibute Get current console text attribute type
gotoxy Set cursor position
normal Set console text normal attribute
set_attibute Set current console text attribute type
wherexy Get cursor position

Low Level I/O emit Send a character to the terminal emulator
getchar ANSI get character from console
kbd_hit Install vector into vector table
kbd_key Get a key from the terminal emulator
key Get a character from the standard mail-

box
putchar ANSI put character to console

C Standard I/O Library
Emulation Functions

fclose Close a host disk file

ferase Delete a host disk file by name
fflush Commits an open file I/O stream to disk
fopen Open a host disk file for read
fread Read from host disk file into target mem-

ory
fseek Moves the file pointer to a specified loca-

tion
fwrite Write to host disk file from target mem-

ory
gets ANSI gets from console
printf ANSI printf to console
puts ANSI puts to console
scanf ANSI scanf from console
sprintf ANSI sprintf
sscanf ANSI sscanf
type Send a character string to the terminal

emulator
Terminal Applet Exten-
sions

get_busmaster_addr Retrieve host busmaster address from
Terminal

plot Transfer data buffer to host for plotting
stdio_reset Reset the Terminal program
stdio_terminate Send the termination code to Terminal
 Development Package Manual

DSP Library Functions

Category Name Description
Signal Processing
Functions

bartlett Bartlett window generation

bitrev Bit reversal function
blackman Blackman window generation
buffer_statistics Calculate statistics on a data buffer
ffft_r1 Forward Fast Fourier Transform - Real
ffft_r2 Forward Fast Fourier Transform - Com-

plex
fir Finite Impulse Response Filter
hamming Hamming window generation
hanning Hanning window generation
harris Harris window generation
ifft_r1 Inverse Fast Fourier Transform - Real
ifft_r2 Inverse Fast Fourier Transform - Com-

plex
vmul Multiply two vectors into a third vector

Matrix Functions matrix_add Add two matrices and return a sum
MATRIX

matrix_allocate Allocate a matrix and return its MATRIX
pointer

matrix_crop Form sub-matrix from a larger matrix
matrix_det Return the determinant of a square matrix
matrix_free Free matrix area and MATRIX structure
matrix_invert Invert a square matrix, return inverse

MATRIX
matrix_mult Multiply two matrices, return new

MATRIX
matrix_mult_pwise Multiply two matrices element by ele-

ment
matrix_print Print the elements of a matrix to stdout
matrix_scale Scale all of a matrix by a constant
matrix_sub Subtract two matrices and return a differ-

ence MATRIX
matrix_transpose Transpose a matrix, return pointer to new

MATRIX
Queue Support Func-
tions

dequeue_ptr Remove data from a queue and adjust
pointer

enqueue_ptr Load data into Queue and update pointers
enqueued Return count of data elements in a Queue
queue_init Initialize memory Queue structure

BERR Sequence Gen-
eration Functions

berr_decode Tests a value in a BERR sequence

berr_encode Generate the next value in a BERR
sequence

berr_initialize Set up a BERR sequence generator
Data Compression
Functions

a_compress A-Law data compression

a_expand A-Law data expansion
mu_compress Mu-Law data compression
mu_expand Mu-Law data expansion
 Development Package Manual 109

Target DSP Peripheral Libraries

110
 Development Package Manual

CHAPTER 9 Host DLL Reference
 D
DLL Functions Grouped by Function

The functions tabularized below may be used in any Host program written in a lan-
guage, which supports access to a Dynamic Link Library. The prototypes for these
functions are listed in the PERIPH\INCLUDE\LIB\TARGET.H file. The names of
these functions are aliai of the actual board-specific library function names, which
are proto-typed in PERIPH\LIB\HOST\ALIAS.H.

TABLE 15. Generic DLL Function List

Category Function Prototype Function Description
General BOOL target_open(int target) Opens driver for specified target DSP

board. Returns boolean.
BOOL target_close(int target) Closes driver for specified target DSP

board. Returns boolean
LPVOID target_cardinfo(int target); Returns address of cardinfo structure

for target.
int iicoffld(char *, int target, HWND hPar-
ent);

Loads a COFF executable file onto
target DSP

Interrupt

Functions

BOOL host_interrupt_enable(int target); Enables a previously installed virtual
interrupt handler.

BOOL host_interrupt_disable(int target); Disables a previously enabled virtual
interrupt handler

void host_interrupt_install(int target,
void (*virtual_isr)(void *), void * con-
text);

Installs a virtual interrupt handler

void target_interrupt(int target); Interrupts target DSP board
void host_interrupt_deinstall(int target); Removes a virtual interrupt handler.
void mailbox_interrupt(int target,
unsigned int value);

Interrupts the target DSP after writing
value to special mailbox

unsigned int mailbox_interrupt_ack(int
target);

Acknowledges target to Host inter-
rupt, returns special mailbox contents
evelopment Package Manual 111

Host DLL Reference

112
Control

Functions

void target_reset(int target); Physically asserts reset on the target
DSP board.

void target_run(int target); Deasserts reset on the target DSP
board

void target_outport(int target, int port, int
value);

Outputs a value to specified DSP
board I/O port address

int target_inport(int target, int port); Inputs a value from specified DSP
board I/O port

void target_opreg_outport(int target, int
port, int value);

Outputs a value to specified DSP
board operation port address

int target_opreg_inport(int target, int port); Inputs a value from specified DSP
board operation port

void target_control(int target, int bit, int
state);

Modifies a bit in the control register
of the target DSP board

Mailbox

Functions

int read_mailbox(int target, int); Reads the specified mailbox of the
target DSP board

void write_mailbox(int target, int, int); Writes to the specified mailbox of the
target DSP board.

BOOL check_outbox(int target, int); Interrogates the specified output mail-
box status

BOOL check_inbox(int target, int); Interrogates the specified input mail-
box status

int read_mb_terminate(int target, int, int *,
int wide);

Reads the specified input mailbox, if
full

int write_mb_terminate(int target, int
box_number, int value, int wide);

Writes to the specified output mail-
box, if empty

void clear_mailboxes(int target); Clears all mailboxes to empty state
int target_key(int target); Reads terminal mailbox, returns an 8-

bit contents
void target_emit(int target, int value); Writes 8-bit value to terminal mailbox
void target_Tx(int target, int value); Writes 32-bit value to terminal mail-

box
int target_Rx(int target); Reads 32-bit value from terminal

mailbox
Bulk
Transport
Interface

Functions

int BULK_GetNumDevices(); Returns the number of SBC62 USB
devices detected

BOOL BULK_OpenDevice(int iDevice,
HANDLE *phDevice)

Opens a device for BULK transport
access.

BOOL BULK_CloseDevice(IN HAN-
DLE hDevice)

Closes a device for BULK transport
access

BOOL BULK_OpenChannel(int iDevice,
WORD wChannel, BOOL fOverlapped,
BULK_HANDLE *pHandle);

Opens a data channel in BULK mode

BOOL
BULK_CloseChannel(BULK_HANDLE
Handle)

Closes a data channel opened with
BULK_OpenChannel()

BOOL BULK_Read(BULK_HANDLE
Handle, LPVOID lpBuffer, DWORD
dwNumberOfBytesToRead, LPDWORD
lpNumberOfBytesRead, LPOVER-
LAPPED lpOverlapped);

Reads a block of data in BULK mode.
 Development Package Manual

BOOL BULK_Write(BULK_HANDLE
Handle, LPCVOID lpBuffer, DWORD
dwNumberOfBytesToWrite, LPDWORD
lpNumberOfBytesWritten, LPOVER-
LAPPED lpOverlapped);

Writes a block of data in BULK mode

BOOL
BULK_GetOverlappedReadResult(BULK
_HANDLE Handle, LPOVERLAPPED
lpOverlapped, LPDWORD lpNumberOf-
BytesTransferred, BOOL bWait)

Gets the WIN32 Overlapped Result
for the Read portion of the data chan-
nel.

BOOL
BULK_GetOverlappedWriteResult(BUL
K_HANDLE Handle, LPOVERLAPPED
lpOverlapped, LPDWORD lpNumberOf-
BytesTransferred, BOOL bWait);

Gets the WIN32 Overlapped Result
for the Write portion of the data chan-
nel.

BOOL
BULK_CancelIo(BULK_HANDLE Han-
dle)

Cancels all pending I/O on the device

BOOL EXPORT STREAM_Open(int iDe-
vice, WORD wChannel, WORD wBuffer-
Size,WORD wBlockSize,
BULK_HANDLE *pHandle)

Opens s data channel in STREAM
node.

BOOL
STREAM_Close(BULK_HANDLE han-
dle)

Closes a STREAM data channel

WORD
STREAM_WriteAvailable(BULK_HAND
LE handle)

Returns the amount of space available
for Write data

WORD
STREAM_ReadAvailable(BULK_HAND
LE handle)

Returns the amount of data available
on the STREAM channel

WORD
STREAM_Write(BULK_HANDLE han-
dle, INT32 *pBuffer, WORD wElement-
Count)

Writes a block of data to the
STREAM channel

void STREAM_Read(BULK_HANDLE
handle, INT32 *pBuffer, WORD wEle-
mentCount)

Reads a block of data from the
STREAM channel

void STREAM_Flush(BULK_HANDLE
handle)

Writes all the output data to the target

Sempahore

Functions

void get_semaphore(int target, int sema-
phore);

Gains ownership of specified target
semaphore

void request_semaphore(int target, int
semaphore);

Requests ownership of specified tar-
get semaphore

BOOL own_semaphore(int target, int
semaphore);

Interrogates ownership status of speci-
fied semaphore

void release_semaphore(int target, int
semaphore);

Relinquishes control of specified
semaphore

Talker

Functions

int target_check(int target); Interrogates for Talker running on tar-
get

void start_app(int target); Starts a previously downloaded target
application program

int start_talker(int target); Starts the target Talker executing.
int target_revision(int target); Returns the revision of the target

Talker
 Development Package Manual 113

Host DLL Reference

114
 Development Package Manual

CHAPTER 10 DOS Environment
Requirements
 D

de\tar-

r-
Innovative Integration Developers Packages, including the TI C Compiler, make
use of environment variables in order to locate header files monitor script files, etc.
Be sure to set the following environment variables when installing either the C
compiler or I.I. libraries. Note that several of these environment variables may be
automatically set when running the SETUP program on the distribution disks.
However, when upgrading from previous versions or when mixing development
components from II or other sources, problems can arise.

Use the table below to insure that you specify all needed environment variables.

 Environment
Variable Name Products Affected Suggested settings
DSP_COMPILER All TI C Compilers set DSP_COMPILER=<compiler dir>

ie set DSP_COMPILER=c:\c6xtools
II_BOARD Dev Pkg Applets set II_BOARD=<board dir>

ie set II_BOARD=c:\M62cc
C_DIR All TI C Compilers

All II peripheral
libraries

set C_DIR=%ii_board%;%ii_board%\inclu
get;<compiler dir>

ie set C_DIR=c:\M62cc;c:\M62cc\include\ta
get;c:\c6xtools

Specified order is critical!
C_OPTIONS TI Flt Pt C Compiler set C_OPTIONS=<switches>

ie set C_OPTIONS =-q –x2 –o2 –g –ss
A_DIR All TI Assemblers Same as C_DIR above
D_DIR TI Debuggers

(Not Code Composer)

set D_DIR=<debugger dir>

ie set D_DIR=c:\c3xhll
evelopment Package Manual 115

DOS Environment Requirements

116
TABLE 16. Required disk directory structure for II development tools.

The II, TI, and C Development System for the M62 requires the following environment variables be set
properly for correct operation:

set dsp_compiler=c:\c6xtools

set ii_board=c:\M62cc

set c_dir=%ii_board;%ii_board%\include\target;c:\c6xtools

set a_dir=%ii_board;%ii_board%\include\target;c:\c6xtools

set d_src=c:\M62cc\stdio;c:\M62cc\dsp;

c:\M62cc\periph\analog;c:\M62cc\periph\digital;

c:\M62cc\periph\misc;c:\M62cc\periph\flash;

c:\M62cc\periph\bus

set c_option=-ss -o2 -g –x2 –q

path=%path%;%dsp_compiler%;%ii_board%;%ii_board%\lib\host

D_SRC All Debuggers set D_SRC=<source code dir1>;<dir2>;...;<dir
n>

ie set D_SRC=c:\M62cc\stdio;c:\M62cc\dsp;

c:\M62cc\periph\analog;c:\M62cc\periph\digital;…

;c:\M62cc\periph\bus
PATH All II products

All TI Tools

set path=<old path>;<compiler dir>;<board
dir>;<host lib dir>

set
path=%path%;%dsp_compiler%;%ii_board%;%ii_
board%\host\lib
 Development Package Manual

CHAPTER 11 M62/cM62 Hardware
 D
M62/cM62 Hardware Functions

The M62 is a PCI bus compatible digital signal processor (DSP) card based around
the Texas Instruments TMS320C6201 processor. Implementing a modular I/O
expansion system, the M62 is particularly suited to data acquisition and control
tasks, and is supported by a collection of I/O bus function cards, which provide
hardware interfacing to real-world equipment.

The M62’s features include:

• TMS320C6201 processor.

• Optional external zero wait-state SBSRAM and one wait-state SDRAM mem-
ory pools.

• Two inter-board communications ports (up to 80 Mbytes/sec transfer rate).

• Six channels of on-board timing (two on-chip timers, three custom 16-bit timers
in FPGA logic and the 9850 DDS timebase).

• OMNIBUS module compatible (two available slots on M62, three on cM62).

• 32 bits of digital I/O.

• Two serial port connectors.

• External mux board control connectors (compatible with external TERM multi-
plexer and signal conditioner boards).

• JTAG hardware emulation support.
evelopment Package Manual 117

M62/cM62 Hardware

118
The following figure gives a block diagram of the M62/cM62.

FIGURE 23. M62/cM62 Block Diagram

The cM62 is a Compact PCI compatible version of the M62 board. The cM62 retains all of the features
of the M62 but is intended for use in Compact PCI host systems. In addition to the M62 feature set, the
cM62 includes an additional OMNIBUS slot (allowing up to three OMNIBUS modules to be installed
on a single cM62 board).

For brevity’s sake, this section will refer to both cards as the M62. Any differences in functionality
between the two boards (support of the third I/O bus site, different types of connectors, etc.) will be
noted as required. In addition, the PCI and Compact PCI buses are collectively referred to as the PCI
bus.

Memory Map

The M62 processor operates in ‘C6201 HPI boot mode with memory map of type 1. In this mode, the
processor’s memory is available to the PCI host computer via the processor’s host port interface (HPI).
The on-chip memory is mapped starting at address 0. Applications programs are loaded via the HPI by
the host while the card is in reset mode. Once the program is loaded, reset is deasserted by the host and
the processor boots from on-chip RAM starting at address 0.

TMS320C6201
DSP

Serial Port 0
Serial Port 1

 JTAG Port

 SBSRAM
(1Mbyte)
(Optional)

OMNIBUS
Slot 0

OMNIBUS
Slot 1

AD9850 DDS

16-bit Timers

External
Connectors

External Bus

JTAG
Connectors

Async
SRAM

V360 PCI
Interface

SDRAM
(16Mbyte)
(Optional)

PCI Bus

32-bit Digital I/O

FIFO Port I/O
Expansion

OMNIBUS
Slot 2

(cM62 only)
 Development Package Manual

M62 Hardware Initialization Requirements
The following figure gives the processor memory map of the M62 for external peripherals and memory.
Please note that this table ignores any on-chip resources.

TABLE 17. M62 External Memory Map

M62 Hardware Initialization Requirements

The M62 design requires the following values to be written to its hardware control registers in order to
provide access to on-board hardware:

Function Address Memory Space
FIFOPort 0x400000 CE0
V360 Registers 0x1400000 CE1
FIFOPort Reset 0x1410000
FIFOPort Enable 0x1420000
OMNIBUS Control (reserved) 0x1430000
External Mux Control 0 0x1440000
External Mux Control 1 0x1450000
AD9850 Reset 0x1470000
AD9850 Frequency Update 0x1480000
AD9850 Write Clock 0x1490000
Digital I/O Data Register 0x14A0000
Digital I/O Direction Control 0x14B0000
Digital I/O Input Latch Clock Control Register 0x14C0000
Transmit FIFOPort PEN* Mode 0x14D0000
Receive FIFOPort Level Status 0x14D4000
Transmit FIFOPort Level Status 0x14D8000
16 bit PIT Timers 0x14F0000
External Interrupt Input 4 Select 0x1500000
External Interrupt Input 5 Select 0x1510000
External Interrupt Input 6 Select 0x1520000
External Interrupt Input 7 Select 0x1530000
OMNIBUS Strobe 0 0x1540000
OMNIBUS Strobe 1 0x1550000
OMNIBUS Strobe 2 0x1560000
OMNIBUS Strobe 3 0x1570000
OMNIBUS Strobe 4 0x1580000
OMNIBUS Strobe 5 0x1590000
OMNIBUS Strobe 6 0x15A0000
OMNIBUS Strobe 7 0x15B0000
OMNIBUS Strobe 8 (cM62 only) 0x15C0000
OMNIBUS Strobe 9 (cM62 only) 0x15D0000
OMNIBUS Strobe 10 (cM62 only) 0x15E0000
OMNIBUS Strobe 11 (cM62 only) 0x15F0000
Async SRAM (128Kx32) 0x1600000
SDRAM (16Mbyte) (optional) 0x2000000 CE2
SBSRAM (1Mbyte) (optional) 0x3000000 CE3
 Development Package Manual 119

M62/cM62 Hardware

120
TABLE 18. M62 Bus Control Register Initialization Values

These values are initialized automatically by C programs compiled under the M62 Development Pack-
age software libraries. Be sure to include initialization of these values whenever software is developed
outside the Development Package or when a JTAG hardware assisted debugger is employed for code
downloading to the M62. (i.e. when using Code Composer or any other JTAG debugger package)

External Memory

The M62 offers three types of external memory: asynchronous SRAM (ASRAM), synchronous DRAM
(SDRAM), and synchronous burst SRAM (SBSRAM). The 128Kx32 ASRAM memory comes stan-
dard with the M62, while the SBSRAM and SDRAM are optional.

ASRAM is used by the M62 as a buffer for bus master and slave data movement on the PCI bus. The
ASRAM is accessible by the V360 PCI bus interface device, allowing the processor to setup bus master
data transfers, which are handled as a DMA-style transfer by the V360. The M62 utilizes the ‘C6201’s
HOLD/HOLDA bus grant feature to provide ASRAM access to the V360. In addition, the ASRAM
memory acts as a target for slave accesses by other PCI bus masters (either the host processor or other
adapter cards).

The optional SBSRAM and SDRAM memories provide large, fast areas to store copious amounts of
data or program information. The SBSRAM and SDRAM memories are not accessible by the PCI
interface.

The ‘C6201 processor operates in big endian addressing mode, allowing 8, 16, and 32 bit wide data
movement to and from external SBSRAM and SDRAM memory. Async SRAM supports 32-bit
accesses only, as does the V360 PCI bus interface.

M62 OMNIBUS

The M62 I/O bus provides a modular, high-speed expansion area which is directly tied to the proces-
sor’s bus and which is ideally suited for I/O hardware expansion. Direct memory-mapped accesses
allow the processor to transfer data to and from I/O bus peripherals constructed as plug-in modules,
which can be mixed and matched to suit the particular user’s functional requirements.

Register Address Value
EMIF Global Control 0x01800000 0x00003069
CE1 Control 0x01800004 0x73E70F22
CE0 Control 0x01800008 0x11010410
CE2 Control 0x01800010 0x00000030
CE3 Control 0x01800014 0x00000040
SDRAM Control 0x01800018 0x07117000
SDRAM Refresh 0x0180001C 0x00000618
Interrupt Polarity 0x019C0008 0x0000000F
 Development Package Manual

M62 OMNIBUS
The OMNIBUS slots are accessed as memory-mapped peripherals with the M62 providing four
decoded chip select signals per slot. The following figure gives the memory map for the OMNIBUS
slots, and shows the decoded signal to slot mapping.

TABLE 19. M62 I/O Bus Memory Mapping

Each module site provides a 32-bit wide data bus connection to the processor’s data bus, with 12 bits of
low-order address signals for additional decoding beyond the four chip select signals available per slot.
Each module also connects to a ‘C6201 serial port (serial port zero for slot zero, and serial port 1 for
slots 1 and 2) to allow serial port driven I/O. Bus reset, RDY, R/W, and processor clock signals are
available, as are power connections for digital 5V and analog +-5V and +-15V. Timebase connections
include timer channels from both the custom 16-bit timers and the 9850 direct-digital synthesizer.

Each OMNIBUS slot has a 50 pin undedicated connector (JP17 on slot 0, JP21 on slot 1, and JP32 on
slot 2) for use in providing external I/O to/from a module installed in the slot. The slot’s I/O connector
is in turn pinned out to a 50 pin .100” square double row header (JP18 for slot 0, JP22 for slot 1) on the
M62 and to 50 pin mini SCSI style connectors on the cM62 (JP18 for slot 0, JP22 for slot 1, and JP33
for slot 2). The M62 also provides 15 pin external connectors for each slot which allow the highest
numbered 15 signals on the header connectors to be pinned out external to the host computers chassis.

Connector pinouts for the module sites are provided in the appendices. Individual pin functions are
noted in the tables, and in general the OMNIBUS pinout represents a direct connection to the ‘C6201
local bus.

M62 OMNIBUS Memory Mapping

Since the ‘C6201 processor is a byte addressable machine, which implements its address bus based on a
32-bit transfer width (i.e. the address bus starts at A2 and separate byte enable pins are supplied to con-
trol accesses to individual bytes within the 32-bit wide location denoted by the address bus), users must
take care when writing software which performs OMNIBUS accesses.

The OMNIBUS specification requires 32-bit accesses and does not support byte or half-word (16-bit)
accesses. No support is included in the specification for the ‘C6201’s byte enable pins. This means that
software performing accesses must always perform 32-bit transactions with the OMNIBUS modules.

Function Starting Address Module Slot
OMNIBUS Strobe 0 0x1540000 0
OMNIBUS Strobe 1 0x1550000 0
OMNIBUS Strobe 2 0x1560000 0
OMNIBUS Strobe 3 0x1570000 0
OMNIBUS Strobe 4 0x1580000 1
OMNIBUS Strobe 5 0x1590000 1
OMNIBUS Strobe 6 0x15A0000 1
OMNIBUS Strobe 7 0x15B0000 1
OMNIBUS Strobe 8 (cM62 only) 0x15C0000 2
OMNIBUS Strobe 9 (cM62 only) 0x15D0000 2
OMNIBUS Strobe 10 (cM62 only) 0x15E0000 2
OMNIBUS Strobe 11 (cM62 only) 0x15F0000 2
 Development Package Manual 121

M62/cM62 Hardware

122
When writing C code for the M62, programmers should use only variables of type int or unsigned int (or
their derived types). All accesses should be word justified (the least significant nibble of the address
must always be a multiple of four). Accesses generated using pointers to variables of type char, short,
or long will cause erroneous non-32-bit accesses. Correct OMNIBUS module operation under these sit-
uations is not guaranteed.

It should be noted that memory decoding within the OMNIBUS decode regions uses 32-bit addressing
and that the memory map tables given in the OMNIBUS Hardware Manual should be treated appropri-
ately. For example, the description of the OMNIBUS DIG module notes that the byte 3 direction con-
trol register for a module installed in site 0 is mapped to address IOMOD2 + 3. This address should be
literally interpreted as 0x156000C, where IOMOD2 is equal to 0x1560000 and the offset adds decimal
12 (three 32-bit words of offset). IOMOD2 + 3 should NOT be interpreted as 0x1560003, since the off-
set is 3 32-bit words, not 3 bytes.

This addressing is most easily handled in C by using integer pointers and integer pointer arithmetic,
which will always result in the required address alignment. For example, the following code defines a
pointer and accesses the byte 3 direction control register with the documented offset:

unsigned int *pointer = 0x1560000;

(pointer + 3) = 0x0; / set byte 3 to output mode */

The actual accessed memory location is 0x156000C, due to the way pointer math is handled in C.

OMNIBUS Power

The OMNIBUS interface provides five separate power supplies for use by modules along with two sep-
arate ground return connections. The following table lists the supplies and their power ratings. A sepa-
rate digital 5V supply is provided along with separate digital grounds to minimize the digital noise
present on the analog power supplies.

TABLE 20. I/O Bus Power Ratings

Please note that the AGND and DGND busses are separated on the M62 and for proper ground refer-
encing they must be tied together on modules which use the analog power supplies (any supply other
than digital 5V, 12V, or –12V). Innovative Integration recommends that a ferrite bead (Panasonic EXC-
ELSA35V or equivalent) be used on custom modules to connect the two ground busses in order to pre-
vent high frequency digital noise on the DGND bus from polluting the clean AGND return.

Pin Name Voltage Current Rating (max)
DVCC 5V (digital) (System dependent)
+12 12V (System dependent)
-12 -12V (System dependent)
AVCC 5V (analog) 500 mA
-AVCC -5V 500 mA
+AV +15V 330 mA
-AV -15V 330 mA
 Development Package Manual

FIFOPort I/O Expansion
FIFOPort I/O Expansion

The FIFOPort feature provides a buffered bidirectional 16-bit interface which allows external hardware
or other M62 boards to communicate with the M62 at high data rates. A single input FIFO is provided
to buffer incoming strobed parallel data, while a FIFOPort compatible output supports clocking data to
external hardware or other FIFOPorts. Access to the ‘C6201 timer I/O pins is provided to support sim-
ple bit I/O requirements.

The following diagram illustrates the FIFOPort’s operation. The FIFO buffer memory serves to clock
incoming data and store it for use by the ‘C6201. Data is formatted as a 16-bit wide data bus synchro-
nous with an rising edge strobe signal, which acts as the FIFO load clock. The output portion consists
of the same two signals: output data plus the strobe signal for the receiving end of the port.

FIGURE 24. FIFOPort Block Diagram

The FIFOPort also provides external access to receive the FIFO’s empty, full, and programmable almost
full flags to allow hardware to monitor the FIFO’s level status. The port can also receive FIFO level sta-
tus from external hardware to allow the ‘C6201 processor to monitor level status of FIFOs located off
the M62 card. Both the onboard receive FIFO level status and the off board FIFO status lines may be
polled or may generate interrupts to the ‘C6201 processor.

In addition to the FIFO data management functions, access to the ‘C6201 timer I/O pins is provided to
support simple bit I/O requirements. The timer I/O pins are buffered through LVT family logic buffers
and driven on or off the card for use where individual bit I/O control is needed for the external hard-
ware.

Also available on the FIFOPort connector is an external interrupt input, which is connected to the pro-
cessor’s interrupt switch matrix. This external interrupt input allows the ‘C6201 to receive an active
low interrupt from external hardware.

FIFO Port Connector

Receive FIFO
(512x16)

‘C6201 Data Bus

Input Data
and Strobe

Output Data
and Strobe

FIFO Level
Status

74FCT244
Buffers

‘C6201 Timer I/O

External
FIFO Level

Status

To processor 74LVT244
Buffers
 Development Package Manual 123

M62/cM62 Hardware

124
Transmitting and Receiving FIFOPort Data

Data is transmitted and received on the FIFOPort by means of processor address location 0x400000.
EMIF read and write accesses (due to either CPU or DMA activity) cause read and write strobes to be
generated to the FIFOPort circuitry only when this address is accessed.

In the case of a write access, an active high output strobe is generated on the external connector and 16-
bit bus data is driven out to the output bits. This data should be latched by external hardware on the ris-
ing edge of the FIFOPort output strobe. Write accesses do not affect the current state of the receive
FIFO.

In the case of a read, an input read strobe is generated to the receive FIFO and its output data latched by
the processor. If the data item being read in the current cycle is not the last item stored in the buffer, the
next data item is clocked out by the FIFO and held ready for the next read access by the processor. Read
accesses do not generate output strobes to the external connector.

Please note that the data returned by the FIFO on a read access is present on the least significant 16-bits
of the processor’s data bus. The most significant 16 bits are not driven and are not defined. If 32-bit
CPU accesses are being used to read data from the FIFO, then the upper 16 bits of the result should be
masked off before use. The DMA controller may be programmed for 16-bit access width and will auto-
matically perform 16-bit to 32-bit data translation. Each stored 32-bit wide data item retrieved will be
the concatenation of two 16-bit values read from the FIFO.

If the receive FIFO grows empty, the last data item’s value will be output on any subsequent read
accesses.

Monitoring FIFO Status

The FIFOPort provides a FIFO level monitoring feature, which allows software to read the receive
FIFO’s level indicators as well as FIFO level data from external hardware (if connected). The receive
FIFO’s empty, full, and programmable almost full flags can be read at any time by the CPU. The inter-
rupt selection matrix may also be programmed to notify the CPU of level events via an interrupt (see
Interrupts section for more information). The same functionality is provided for the external FIFO,
allowing the CPU to read back or be interrupted by any of the six different level state conditions.

The FIFO level status is monitored using two registers, one for the receive FIFO and one for the trans-
mit FIFO (if connected). The register bit definitions are given below.

FIGURE 25. Receive FIFOPort Level Status Register

RCV_EMPTYRCV_HFRCV_FULL

012

Reserved

31-4

Bit Field:

Bit Number:

RCV_AF

3

 Development Package Manual

FIFOPort I/O Expansion
TABLE 21. Receive FIFOPort Level Status Register Definition

FIGURE 26. Transmit FIFOPort Level Status Register

TABLE 22. Transmit FIFOPort Level Status Register Definition

The receive FIFO level bits are read directly from the FIFO hardware on the corresponding FIFOPort,
while the transmit FIFO bits are read from the level input pins on the FIFOPort connector. If no exter-
nal status is being reported by the hardware connected to the FIFOPort, then these bits will read as ones
(onboard 10K pullup resistors hold the transmit input pins high). If external FIFO level reporting is not
desired, the level inputs may be used for application specific bit inputs to report other hardware status
conditions or trigger interrupts on the M62 processor. Note that this is in addition to the dedicated timer
I/O pins and the processor interrupt input pin on the FIFOPort connector, which remain available
regardless of the use of the FIFO status inputs. The digital return levels given for the transmit FIFO
assume connection to another ‘C6x card manufactured by Innovative Integration, or to hardware emu-
lating similar FIFO level reporting.

With appropriate programming, the FIFO levels may also be monitored using processor interrupts. The
three status bits for each FIFO in each direction are available as sources to the interrupt selection matrix
for each processor. This technique is typically used to drive DMA transfers to and from the FIFOPort,
where one FIFO status interrupt triggers one or more transfers using DMA synchronization. Alterna-
tively for CPU interrupts where the target CPU in a transfer wants to be interrupted when data (or space)
is available in the FIFO. This would be typical of “one-shot” FIFO transfers, where a single full FIFO’s
worth of data is transferred at once. The receiving processor needs to be notified when the FIFO
reached the full state so that a read operation on the other side of the FIFO may commence. For more
information on using the FIFO levels to trigger interrupts to the ‘C6201 processors, see the Interrupts
section.

Bit Field
Name Function
RCV_EMPTY Receive FIFO Empty Flag (1 = empty, 0 = not empty)
RCV_HF Receive FIFO Half-full Flag (1 = not half full, 0 = at least half full)
RCV_FULL Receive FIFO Full Flag (1 = not full, 0 = full)
RCV_AF Receive FIFO Almost-full Flag (1 = almost-full, 0= not almost-full)

Bit Field
Name Function
TX_EMPTY Transmit FIFO Empty Flag (0 = empty, 1 = not empty)
TX_HF Transmit FIFO Half-full Flag (0 = not half full, 1 = at least half full)
TX_FULL Transmit FIFO Full Flag (1 = not full, 0 = full)
TX_AF Transmit FIFO Almost-full Flag (1 = almost-full, 0= not almost-full)

TX_EMPTYTX_HFTX_FULL

012

Reserved

31-4

Bit Field:

Bit Number:

TX_AF

3

 Development Package Manual 125

M62/cM62 Hardware

126
FIFOPort Reset

The receive FIFO may be cleared and its condition reset at any time by accessing the FIFOPort reset
register at address 0x1410000. The data written to the register is not critical: a write access of any data
to this address will reset the FIFO. Upon reset, the FIFO levels are cleared, the flags change to reflect
the FIFO empty status, and the programmable almost full control variables are reset to default values
(see below for more information).

FIFOPort Enable

After a board reset or power up and prior to reading data from the receive side of the FIFOPort, software
must enable data output by accessing the FIFOPort enable register at address 0x1420000. Either a read
or write access to the register may be used to enable the FIFOPort. Data reads issued to the FIFOPort
prior to enabling the port will clock buffered data out of the port (if any data is stored in the FIFO) but
the data will not be read correctly by the processor.

Controlling the FIFOPort Programmable Almost-full Flag

In addition to the fixed function empty and full flags, the FIFOPort provides a programmable almost-
full flag, which can be used to enable notification on partial FIFO transfer lengths. This feature is par-
ticularly suitable to DMA block transfers on the FIFOPort because it maximizes the transfer rates on
both sides of the FIFO by keeping the buffer partially filled.

The almost-full flag operates as follows: given two initialization bytes (X and Y), the FIFO outputs an
almost-full/almost-empty flag function, which is active whenever the FIFO contains X or less words of
data or 512-Y or more words of data. By programming the X value equal to the almost-full level and
the Y value to zero (0), the FIFO’s programmable flag effectively becomes a variable partial full indica-
tor. For example, programming the X variable to 128 and the Y variable to zero (0) yields a quarter-full
output function.

The programmable almost-full flag control variables for the transmit half of the FIFOPort are initialized
by enabling PEN mode, then writing the variables to the FIFOPort. PEN mode is enabled by writing a
zero to the transmit FIFOPort PEN mode register at address 0x14D0000. The X variable is then written
to the FIFOPort, followed by the Y variable, with both data values being 8-bits wide and right justified
on the bus. The default values for the X and Y variables are both 64 (the FIFO reverts back to these val-
ues on a reset). Following the completion of the Y variable write, PEN mode should be disabled by
writing a one to the PEN mode register. Please note that the almost-full flag variables may only be writ-
ten immediately after a FIFO reset has been issued to the transmit side FIFO and before any data is writ-
ten to the transmit FIFO.

Note: the above description of the PEN mode register operation was a change to the M62 control logic
made in April 1999. Boards purchased earlier than this date should be returned to Innovative for an
update. Please contact Innovative with questions concerning this feature.

Please note that this initialization operation only affects the transmit FIFO (i.e. the FIFO on the external
hardware or other M62 or Quatro62 card). The FIFOPort architecture does not allow the onboard pro-
 Development Package Manual

FIFOPort I/O Expansion
cessors to initialize the programmable levels of the FIFOPort receive FIFOs. This initialization is
always performed by the external hardware prior to writing data to the receive FIFO.

Timer I/O and the FIFOPort

The FIFOPort also provides a connection to the processor’s timer I/O pins. This allows designers of
hardware connecting to the FIFOPort easy access to four bits of unidirectional I/O for control purposes
and status reporting. The on-chip timers of the ‘C6201 may be programmed to generate or receive
clock and count events on the pins, or the pins may be used for general purposes bit I/O.

The M62 implements LVT family buffering between the timer I/O pins and the FIFOPort connector.
Output and input levels are TTL compatible, but the outputs will not drive beyond 3.3V on the high
side, and are tolerant of input voltages of up to 5V. This feature makes the FIFOPort timer I/O pins suit-
able for direct interfacing to 3.3V or 5V TTL compatible logic. Such logic families as HCT, LSTTL,
FCT, ABT, and ACT may be directly connected to the FIFOPort timer I/O pins.

Designing External Hardware for use with the FIFOPort

Use caution when designing external hardware, which is to be connected to the FIFOPort. The signals
present on the interface connector are extremely high speed and failure to handle them appropriately can
cause functional problems with the FIFOPort as well as the M62’s onboard components. Innovative
does not recommend driving cables directly as capacitive load and ringing issues can cause corruption
of the transmitted data. FIFOPort connector pinouts have been provided in the appendices.

The M62 provides mechanical mount holes suitable for use in attaching daughterboard style printed cir-
cuit boards to the FIFOPort connector. The combination of the FIFOPort connector retention and the
mount hole positioning allow designers to easily create interface modules for use in adapting the
FIFOPort connector to external hardware.

The following diagram gives mechanical dimensions for a FIFOPort compatible daughter PC board.

FIGURE 27. FIFOPort Daughterboard Mechanical Dimensions
 Development Package Manual 127

M62/cM62 Hardware

128
FIFOPort Timing

The following diagrams give timing information for the FIFOPort circuitry. This data is derived from
device specifications and is not factory tested.

FIGURE 28. FIFOPort Timing

TABLE 23. FIFOPort Timing Parameters

Notes: Dependent on EMIF programming for CE0 space as well as processor cycle frequency. These
values are determined from recommended EMIF register values.

Parameter min (ns) max (ns)
tWH 7
tWL 7
tSUI 5
tHI 0
tR 10
tAR 5
tPD 7
tSUO 101

tHO 01

tWO 101

tR tAR

tWH tWL

Data Valid

tSUI tHI

FIFO reset

Input strobe

Input data

Data Valid

Output strobe

‘C6x AWE

Output data

tPD tPD

tSUO tHOtWO
 Development Package Manual

Serial Ports
Serial Ports

The ‘C6201’s on-chip serial ports are pinned out to connectors JP15 (port 0) and JP16 (port 1) for use
with external hardware. The serial ports are also connected to the OMNIBUS slots for use with mod-
ules designed to interface to the processor serially.

Pinouts for the serial port connectors are given in the appendices. Innovative recommends buffering
these ports with off board hardware in order to preserve signal integrity.

The following diagram shows the mechanical dimensions for a suggested printed circuit board outline
for use in providing buffering of serial bus signals to external hardware.

FIGURE 29. Serial Port Daughterboard Mechanical Dimensions

Timers

The M62 provides a total of six channels of independent timebase generation on board for use in timing
data acquisition, servo controls, real-time counters, and other applications. The functionality is divided
into three devices: two 32-bit timer channels on the ‘C6201 processor, three custom 16-bit timer chan-
nels in external logic, and a 32-bit direct digital synthesizer (DDS) channel in the AD9850 device. This
section discusses the AD9850 and external timers: for more information on the on-chip timers, see the
TMS320C6201 Peripherals Reference Guide.
 Development Package Manual 129

M62/cM62 Hardware

130
On-chip Timers

The on-chip timers are available for use as software timebases and interrupt generators. They are also
pinned out to connector JP31 for use with external hardware. All four processor timer pins are available
on JP31, allowing applications to use each timer as a time base output, an event counter input, or as bit
I/O. The timer pins are also available on the FIFOPort connector for use in controlling external hard-
ware attached to the FIFOPort. Refer to the appendix for pinout descriptions.

16-bit Timers

The M62 implements three, custom, 16-bit timers onboard, external logic which are capable of trigger-
ing processor interrupts and acting as clock sources for the I/O modules and external hardware. The
timers provide readback capability for the current count register, which allows them to be used as digital
event counters. Each channel may be driven either by an onboard 10 MHz clock source or by external
clock input. In addition, external gating signal are available for each timer channel which allow an
external TTL signal to selectively enable or disable the timer’s clock input to control counting.

All three timers consist of 16-bit decrementing free-running counters with matching 16-bit period regis-
ters driven by a source timebase. The timers decrement once per input clock until they reach zero,
whereupon they automatically reload from the period register and continue counting down. The timer
output is normally high and falls low for one source clock cycle upon expiration of the counter value.
The source clock may be selected from either a 10 MHz onboard timebase or an external input pin. The
source clock is optionally gateable via a second set of gate inputs. The gating and clock input options
allow the external timers to act as event counters for external hardware.

The following table shows the memory map for the timer control registers.

TABLE 24. External Timer Control Registers

The clock mode register controls the source of the clock used to drive each channel. Data bus bit D0
controls channel zero, D1 controls channel one, and D2 controls channel two. Writing a zero to a bit
selects the onboard 10 MHz clock source as the timers clock input, while writing a one selects the exter-
nal INCLKx inputs available on the digital I/O connector. The INCLKx inputs allow for each of the
three channels to be driven by independent clocks from external hardware. For example, writing the
hex value 0x2 to the clock mode register selects the 10 MHz clock as the source timebase for channels
zero and two, while channel one is driven by the INCLK1 signal.

Function Address
Clock Mode 0x14F0000
Channel 0 Period 0x14F0008
Channel 1 Period 0x14F000C
Channel 2 Period 0x14F0010
Channel 0 Count 0x14F0014
Channel 1 Count 0x14F0018
Channel 2 Count 0x14F001C
 Development Package Manual

Timers
The timer period registers are used to store the period values for each timer channel. Each timer’s out-
put pulse period is equal to the period register value plus two source clock cycles. For example, if the
clock mode register for channel zero was programmed to select the 10 MHz clock as the source clock
for channel zero, and the period register were programmed with the value 98. Then timer channel
zero’s output pulse would occur with a period of (98 + 2) source clock cycles, or a frequency of

10 MHz/(98 + 2) = 100 kHz

The highest legal value for the period register is 65534 (yielding a lowest possible output frequency of
152 Hz when using the 10 MHz onboard source clock). Please note that a period register write causes
an immediate counter reload (i.e. the counter immediately starts counting down from the new period
value).

The timer gate inputs allow external signals to control when the counter will decrement. Pulling the
gate line low will disable clocking of the appropriate timer channel. The gate inputs are individually
pulled up to 5V via a 10K resistor.

The timer output signals (TMR0, TMR1, and TMR2 for channels zero, one, and two respectively), input
clock gating signals (GATE0, GATE1, and GATE2), and input clocks (INCLK0, INCLK1, and
INCLK2) are all available for external connections on the digital I/O connector. Refer to the appendices
for details on the pinouts.

AD9850 Direct Digital Synthesizer

The AD9850 direct digital synthesizer (DDS) is a precision programmable clock source, which is capa-
ble of generating frequencies in the range of 0 to 25 MHz with a resolution of 0.019 Hz/step. Unlike a
digital counter-timer chip, which uses a digital counter to divide down a high input clock rate, the DDS
uses phase-locked-loop synthesizer technology to tune a sine wave oscillator based on a 32-bit digital
word. This method realizes a linear output frequency over input range rather than the nonlinear one
associated with counter-timer chips, whose resolution drops dramatically as the period register used to
program them falls. The counter-timer device has a nonlinear frequency step change over its input code
range, as opposed to the DDS device, which maintains a linear frequency step for each input code incre-
ment. This results in the counter-timer’s increased resolution at the high end of its input code range,
with a correspondingly low resolution at the low end. The AD9850 timebase should be selected for use
when a fairly fast but very precise and accurate clock is required by the application.

The AD9850 is mapped into I/O space as shown in the table below. The device is interfaced using the
parallel I/O method, with an address to write data, one to trigger frequency/phase updates, and one to
control the reset pin of the device.

TABLE 25. AD9850 Control Registers

Function I/O Space Address
AD9850 Reset 0x1470000
AD9850 Frequency Update 0x1480000
AD9850 Write Clock 0x1490000
 Development Package Manual 131

M62/cM62 Hardware

132
The write clock address latches frequency/phase data into the AD9850 one byte at a time. The least sig-
nificant eight bits of the processor bus carry the bytewide data. The frequency update address causes
the output frequency and phase of the DDS clock to update to the values contained in its input latches.
The reset address causes an active high reset pulse to be generated to the AD9850. All three registers
are write-only.

The M62 Development Package includes a routine (timebase()) which makes it easy to set the
AD9850’s output frequency.

Digital I/O

The M62 includes 32 bits of software programmable digital I/O for use in controlling digital instru-
ments or acquiring digital inputs. The digital I/O port controls are mapped into memory space using
three addresses: one to read/write the digital I/O data as a single 32-bit word, one for direction control
for each byte of the port, and one for controlling the source of the clock edge used to latch input data
into the digital I/O port register. The following table lists the addresses and their functions.

TABLE 26. Digital I/O Control Registers

The direction control register provides for software control of the drive direction of the port. The least
significant four bits of the register control the four bytes available on the I/O port. Bit D0 sets the direc-
tion for the least significant eight bits if the port (port bits 0-7), D1 the next least significant bits (8-15),
D2 the next least significant (16-23) and D3 the most significant (24-31). Each byte is individually con-
trollable by writing a zero (to select output) or a one (to select input) to the respective bit in the direction
control register. For example, if the value 0xC were written to the direction control register, bits 0-15
would act as inputs while bits 16-31 would act as outputs. All bytes default to input mode upon board
powerup or reset.

The data register allows software to directly read data from port pins programmed for input, or write
data to pins programmed for output. Read operations performed from the data register on port bytes
programmed for output will return the current value of the digital I/O latch (i.e. the last value written to
that portion of the port). For example, suppose that the direction control was programmed to 0xC and
the data register written with the data word 0x12340000. Since the most significant 16 bits are setup as
outputs, those pins on the port connector would assume the value 0x1234. A subsequent read of the
port would yield the value 0x1234xxxx, where xxxx is the value of the signals present on the digital I/O
connector.

The input latch clock register allows the user to select either software read clocking or external hard-
ware clocking. Writing a zero to the register selects software clocking, while writing a one selects
external hardware clocking. If software clocking is selected, then the port latches programmed for input

Function Address
Digital I/O Data Register 0x14A0000
Digital I/O Direction Control 0x14B0000
Digital I/O Input Latch Clock Control Register 0x14C0000
 Development Package Manual

External Mux Control
will clock in the digital data present on the external pins at the beginning of a read cycle executed on the
port data register (30-50 ns before the data is returned to the processor, depending on processor clock
speed). If external clocking is selected, then the port will latch data on the falling edge of the TTL sig-
nal EXT_DIG_RD_CLK* on the digital I/O connector. The data will be held for the processor to read
until the next low-going edge of the EXT_DIG_RD_CLK* signal. In the external hardware clocking
mode, read operations by the processor do not affect the contents of the digital I/O latch. The latched
data may be reread as many times as is required, and only another EXT_DIG_RD_CLK* pulse will
cause new data to be latched into the port.

The ‘FCT16952 devices used to implement the digital I/O port are capable of sourcing 32 mA and sink-
ing 64 mA per pin.

Digital I/O Timing

The following diagram gives timing information for the digital I/O port when used in external readback
clock mode (see above for details). This data is derived from device specifications and is not factory
tested.

FIGURE 30. Digital I/O Port Timing

TABLE 27. Digital I/O Port Timing Parameters

External Mux Control

The M62 provides two external multiplexer control bus connectors for use with the TERM line of exter-
nal multiplexer boards. Control for the multiplexer connectors is provided at the addresses listed in the
following table.

Parameter min (ns)
tSU 0
tH 10

Data Valid

tSU tH

External
Readback Clock

Input data
 Development Package Manual 133

M62/cM62 Hardware

134
TABLE 28. TERM Function Memory Map

The control connectors (JP25 for TERM module 0 and JP26 for TERM module 1) select multiplexer
channel numbers. The first four addresses from the start of each mux control address map allow the
selection of incoming signals on each multiplexer device on the TERM. The fifth address location
allows the simultaneous selection of the same channel on all multiplexer devices. The remaining
address performs a global reset of the TERM hardware.

Refer to the OMNIBUS Manual for additional information regarding the use of Innovative’s TERM
modules with the M62.

Interrupts

The ‘C6201 processor implements four interrupt input pins, which allow external hardware events too
directly trigger software activity. Processor interrupt inputs are supported on the M62 through a set of
control registers and multiplexers, which allows application software to dynamically select the source
of the signal which will drive each particular interrupt input.

The available interrupt source signals are as follows:

1. External interrupt input pins 0-3 (from the I/O modules).

2. External timer channels 0-2.

3. 9850 direct digital synthesizer clock.

4. PCI bus interrupt.

5. Various receive and transmit FIFOPort level status.

TERM Module Function I/O Space Address
0 Mux #0 Channel Select 0x14D0000

Mux #1 Channel Select 0x14D0004
Mux #2 Channel Select 0x14D0008
Mux #3 Channel Select 0x14D000C
All Muxes Channel Select 0x14D0010
Reset 0x14D001C

1 Mux #0 Channel Select 0x14E0000
Mux #1 Channel Select 0x14E0004
Mux #2 Channel Select 0x14E0008
Mux #3 Channel Select 0x14E000C
All Muxes Channel Select 0x14E0010
Reset 0x14E001C
 Development Package Manual

Interrupts
The following table shows the addresses of the control registers for each processor interrupt input. A
value written to the appropriate control register causes the interrupt mux to select the interrupt source
given in the next two table (see below). Note that the selections vary depending on which interrupt
input is being programmed.

TABLE 29. External Interrupt Input Control Registers

TABLE 30. Interrupt Source 4 and 5 Select Register Values

TABLE 31. Interrupt Source 6 and 7 Select Register Values

Function Address
External Interrupt Input 4 Select 0x1500000
External Interrupt Input 5 Select 0x1510000
External Interrupt Input 6 Select 0x1520000
External Interrupt Input 7 Select 0x1530000

Interrupt Control
Register Value Interrupt Source
0 External Interrupt Input 0
1 External Interrupt Input 1
2 External Interrupt Input 2
3 External Interrupt Input 3
4 External Timer 0
5 External Timer 1
6 External Timer 2
7 9850 DDS Clock
8 PCI bus
9 Receive FIFOPort empty
10 Receive FIFOPort half full
11 Receive FIFOPort full
12 Receive FIFOPort almost-full
15 Deactivated (interrupt held high)

Interrupt Control
Register Value Interrupt Source
0 External Interrupt Input 0
1 External Interrupt Input 1
2 External Interrupt Input 2
3 External Interrupt Input 3
4 External Timer 0
5 External Timer 1
6 External Timer 2
7 9850 DDS Clock
8 PCI bus
9 Transmit FIFOPort empty
10 Transmit FIFOPort half full
11 Transmit FIFOPort full
12 Transmit FIFOPort almost-full
15 Deactivated (interrupt held high)
 Development Package Manual 135

M62/cM62 Hardware

136
For example, if the application requires the output from external timer channel two to drive processor
interrupt input five, the value six should be written to memory location 0x1510000. All interrupt con-
trol registers default to setting 15 (disabled) on powerup or board reset. Note that the processor inter-
rupt signals generated by the logic are active low (falling edge trigger), and the ‘C6201 interrupt
polarity control register must be programmed to the value 0xF to correctly receive interrupts.

JTAG Test Bus

The M62 implements a JTAG 1149.1-compatible scan path loop through the onboard ‘C6201, with con-
nector compatible with the specification provided in the TMS320C6201 User’s Guide. When connect-
ing a JTAG controller card cable (from an Innovative Integration Code Hammer debugger card, Texas
Instruments XDS-510, or other vendor’s JTAG hardware), the JP11 connector is used. A shunt should
always be installed on jumper JP13 when the JTAG debugger is in use.

Note: the M62 design boots the ‘C6201 processor using the HPI boot mode. On device power up or
reset, it is not possible to start JTAG debugger software until after the HPI boot process has been com-
pleted. The software will return with “cannot init target” error message if it is started after the processor
has been released from reset, but before the processor has finished the boot process. Innovative Integra-
tion includes a small bootstrapping utility (BOOT.EXE) in the M62 Zuma Toolset which will bootload a
small test application onto the M62 and which should be used prior to starting the debugger after a reset.

M62 PCI Bus Features

The M62 uses the V360 PCI bus bridge chip, along with external glue logic and asynchronous SRAM,
to implement its interface to the PCI bus. The V360 acts as a bridge chip to translate accesses from the
PCI bus into accesses on the ‘C6201 bus. It also performs DMA style data transfers between PCI
address space and the M62’s asynchronous SRAM. Access to the ‘C6201’s HPI port through the V360
is used by host applications to bootload software into the ‘C6201.

PCI Bus I/O and Memory Map

The M62 uses the V360 base address registers and address apertures to map three sets of functionality
into PCI bus I/O and memory space: the V360 internal registers, the async SRAM memory, and the pro-
cessor’s host port interface. Address assignments are made to the board via PCI configuration cycles on
system powerup, or by the host operating system. The following descriptions of the addressed features
assume a working knowledge of PCI plug and play technology as well as any host operating system
support provided by the system in use. The M62 Development Package provides host drivers and
access support, which is highly recommended to shorten software development time.

The V360’s internal register set is mapped into I/O space on the PCI bus using base address register
zero (PCI_IO_BASE in the V360 data sheet), and allows host access to all of the features of the bridge
chip. Host accesses to the I/O space in which the registers are mapped result in slave responses from the
 Development Package Manual

M62 PCI Bus Features
V360 device. The lowest part of the register set also provides a convenient access point to the PCI con-
figuration space registers of the device.

The async SRAM is mapped into host PCI memory using base address register one (PCI_BASE0 in the
V3 literature). This allows the host processor to gain slave mode access to the SRAM memory on the
M62 for data transfers, and allows other expansion boards to act as bus masters to the M62 for direct
data transfers. Accesses made to the PCI mapping address by either the host processor or another bus
master result in slave responses from the V360. An async SRAM access results in a HOLD/HOLDA
arbitration request by the V360 device to the ‘C6201. The slave access will be held not ready until the
‘C6201 has dropped into hold mode and released access to the M62’s processor bus. The V360 then
completes the required transfer between the PCI bus and the async SRAM and releases the HOLD
request t the ‘C6201.

Please note that the ‘C6201 must be in a state where it is capable of releasing bus ownership to the V360
for the PCI bus access to complete normally. Do not set the NOHOLD bit in the EMIF Global Control
Register prior to attempting slave accesses from the PCI bus. Also note that the base address register
used to map the async SRAM into PCI bus space requests 32-bit address mapping, which means that
32-bit capable host software is required to access the async SRAM memory.

The ‘C6201’s HPI feature is also mapped into PCI bus memory, using the V360’s base address register
2 (PCI_BASE1 in the V360 data sheet). The following table gives the mapping of the various HPI reg-
isters within the PCI bus address space.

TABLE 32. HPI Port PCI Bus Mapping

Accesses within the PCI mapped HPI interface result in slave responses from the M62. The various
registers of the HPI interface are mapped as shown in the above table, and have the read/write limita-
tions noted in the TMS320C62xx Peripherals Reference Guide. The HPI interface allows access to both
the standard HPID interface (without address auto-incrementing) and to the HPID mapping which
causes the current address register to be incremented automatically with each data access.

The HPI port interface uses software ready monitoring to poll the current status of the interface. Host
software must poll the status of the HRDY bit in the HPIC register to determine if a current access is
finished and a new access may be started.

PCI Bus BAR1 Offset Function
0x0 HPIC
0x4 HPIC
0x8 HPIA low half word
0xC HPIA high half word
0x10 HPID low half word, with address autoincrement
0x14 HPID high half word, with address autoincrement
0x18 HPID low half word, without address autoincrement
0x1C HPID high half word, without address autoincrement
 Development Package Manual 137

M62/cM62 Hardware

138
M62 Bootstrapping

The M62 processor operates in HPI boot mode and supports direct host access to the processor’s HPI
port via memory mapped registers on the PCI bus. This feature allows the host to access any ‘C6201
memory location and is intended for processor bootstrapping.

The ‘C6201 boot process involves the following steps:

1. Toggle the processor reset active, then inactive.

2. Via the HPI interface, place a bootstrap compatible code image in the processor’s internal memory
starting at address zero.

3. Once the code has been placed in processor memory, write a one to the DSPINT bit in the HPIC reg-
ister to wake the CPU from the reset state. The processor will then begin software execution starting
at address zero in internal memory.

Although the HPI MAP1 boot mode begins running software from onchip memory, it is possible to load
code anywhere in offchip memory. This is provided that the bus control registers for the memory area
in question are initialized prior to any writes via the HPI interface.

There is a complete host COFF compatible M62 bootload routine included in the M62 Development
Package which facilitates ‘C6201 processor bootloading.
 Development Package Manual

CHAPTER 12 Appendices
 D
Board Layout

A schematic of the board layout is displayed on the following page. Please review
this schematic to familiarize yourself with the circuit board’s configuration.
evelopment Package Manual 139

Appendices

140
 Development Package Manual

Connector pinouts
Connector pinouts

JP17, JP18, JP21, JP22, P1, P2 - OMNIBUS I/O Connectors (M62 only)

Connector types: JP17, JP21: AMP .05 Subminiature D male

JP18, JP22: .100” header

P1, P2: Male DB15 connector

Number of pins: JP17, JP21: 50

JP18, JP22: 50

P1, P2: 15

Mating connector: JP17, JP21: AMP 173279-3

JP18, JP22: AMP 1-746285-0

P1, P2: AMP 747909-2

The following table shows the interconnections between the JP17 (OMNIBUS slot 0) and JP21 (OMNI-
BUS slot 1) module I/O connectors and their respective external I/O connectors, JP18 and P1 (OMNI-
BUS slot 0) and JP22 and P2 (OMNIBUS slot 1).

TABLE 33. OMNIBUS I/O Connector Pinouts

JP17, JP21
Pin Numbers

JP18, JP22 Pin
Numbers

P1, P2 Pin
Numbers

1-35 1-35 NA
36 36 1
37 37 9
38 38 2
39 39 10
40 40 3
41 41 11
42 42 4
43 43 12
44 44 5
45 45 13
46 46 6
47 47 14
48 48 7
49 49 15
50 50 8
 Development Package Manual 141

Appendices

142
JP17, JP18, JP21, JP22, JP32, JP33 - OMNIBUS I/O Connectors (cM62 only)

Connector types: JP17, JP21, JP32: AMP .05 Subminiature D male

JP18, JP22, JP33: AMP Amplimite Series III

Number of pins: JP17, JP21, JP32: 50

JP18, JP22, JP33: 50

Mating connector: JP17, JP21, JP32: AMP 173279-3

JP18, JP22, JP33: AMP 750737-5

The following table shows the interconnections between the JP17 (OMNIBUS slot 0), JP21 (OMNI-
BUS slot 1), and JP22 (OMNIBUS slot 2) I/O connectors and their respective external I/O connectors,
JP18 (OMNIBUS slot 0), JP22 (OMNIBUS slot 1), and JP33 (OMNIBUS slot 2).

TABLE 34. OMNIBUS I/O Connector Pinouts

The following diagram gives the physical pin locations for JP18, JP22, and JP33 connectors on the
cM62 board. Please note that these physical pin positions do not use the same numbering scheme as
standard SCSI 50 pin connectors.

JP17, JP21,
JP32 Pin
Numbers

JP18, JP22,
JP33 Pin
Numbers

1-35 1-35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46
47 47
48 48
49 49
50 50
 Development Package Manual

Connector pinouts
FIGURE 31. OMNIBUS I/O Connector Pin Configuration

JP19, 20, 23, 24, 34, 35 - OMNIBUS Bus Connectors

Connector types: AMP .05 Subminiature D male

Number of pins: 50

Mating connector: AMP 173279-3

The following table gives the pin numbers and functions for the JP19 (OMNIBUS slot 0), JP23 (OMNI-
BUS slot 1), and JP34 (OMNIBUS slot 2) (available only on the cM62) connectors. The functions for
JP23 and JP34 are identical to those of JP19, except where noted.

pin 1
pin 2

pin 24
pin 25

pin 26
pin 27

pin 49
pin 50

Not to scale. Front view of I/O connect
edge of the board towards the top of the
 Development Package Manual 143

Appendices

144
TABLE 35. I/O Module Bus Connectors

The following table gives the pin numbers and functions for the JP20 (OMNIBUS slot 0), JP24 (OMNI-
BUS slot 1), and JP35 (OMNIBUS slot 2) (available only on cM62) connectors. The functions for JP24
and JP35 are identical to those of JP20, except where noted.

Pin Number JP19 Function JP23 Function
JP34 Function
(cM62 only)

Direction
(from M62)

1, 19 Digital +5V O, power
2, 20 Digital ground O, power
3-18 Data bus 0-15 I/O
21, 43, 40, 45,
39, 26, 27

Address bus 2-8 O

28 Reset (active low) O
29 External interrupt 0 External inter-

rupt 2
External interrupt 4 I

30 Bus ready (active low) I (open-col-
lector)

31 Processor CLKOUT2 / 4 O
32 PIT timebase channel 0 O
33 R/W* O
34 9850 timebase O
35-38 IOMOD0-3 decoded

selects (active low)
IOMOD4-7
decoded selects
(active low)

IOMOD8-11
decoded selects
(active low)

O

25 -12V O, power
23 +12V O, power
41,42 Analog ground O, power
22,24 Analog -15V O, power
44,46 Analog +15V O, power
47,49 Analog +5V O, power
48,50 Analog -5V O, power

Pin Number JP20 Function JP24 Function
JP35 Function
(cM62 only)

Direction
(from M62)

1, 3-6 Address bus 9-13 O
2, 19, 20, 49,
50

Digital ground O, power

7-18 Reserved Reserved Reserved NA
21 PIT timebase channel

1
O

22 External trigger 0 External trigger 1 External trigger 1 O
23,25 +12V (from PCI bus) O, power
24 CLKS0 CLKS1 CLKS1 I
26 CLKR0 CLKR1 CLKR1 I/O
27 FSR0 FSR1 FSR1 I/O
 Development Package Manual

Connector pinouts
TABLE 36. I/O Module Bus Connectors

JP14 – Digital I/O Connector

Connector type: 0.100” square double row shrouded header

Number of pins: 50

Mating connector: AMP 1-746285-0

The following table gives the pin numbers and functions for the JP14 connector.

TABLE 37. Digital I/O Connector

28 CLKX0 CLKX1 CLKX1 I/O
29 External interrupt 1 External interrupt 3 External interrupt 5 I
30 DR0 DR1 DR1 I
31 FSX0 FSX1 FSX1 I/O
32 DX0 DX1 DX1 O
33-48 Data bus 16-31 I/O

Pin Number JP14 Function Direction (from M62)
1-32 Digital I/O bit 0..31 I/O
33 External Trigger 0 Input (active low) I
34 9850 DDS Clock Output O
35 External Trigger 1 Input (active low) I
36, 38, 40 External Timer Ch. 0, 1, 2 Clock Outputs O
37, 39, 41 External Timer Ch. 0, 1, 2 Gate Inputs I
42, 44, 46 External Timer Ch. 0, 1, 2 Timebase Inputs I
45 External Digital Readback Clock (active

low)
I

47 Digital +5V Power
49 Digital Ground Power
43, 48, 50 Reserved NA
 Development Package Manual 145

Appendices

146
JP31 – Miscellaneous Digital I/O Connector

Connector type: 0.1” square header

Number of pins: 10

Mating connector: AMP 111811-1

The following table gives the pin numbers and functions for the JP31 connector.

TABLE 38. Miscellaneous Digital I/O Connector

JP15, JP16 – Processor Serial Port Connectors

Connector type: 10 pin shrouded header

Number of pins: 10

Mating connector: AMP 746285-1 (for ribbon cable termination) or Samtec SSQ style
(for board-board applications)

The following table gives the pin numbers and functions for the JP15 and JP16 connectors. Pin func-
tions of JP16 are identical to those of JP15 except where noted.

Pin Number JP31 Function Direction (from M62)
1 External Trigger 0 Input (active low) I
2 External Timer 0 Clock Output O
3 On-chip Timer 1 Out O
5 On-chip Timer 1 In I
7 On-chip Timer 0 Out O
9 On-chip Timer 0 In I
4,6,8 Reserved NA
10 Digital Ground Power
 Development Package Manual

Connector pinouts
TABLE 39. Processor Serial Port Connector

JP11 – JTAG Debugger Connector

Connector type: 14 pin shrouded header

Number of pins: 14

Mating connector: AMP 746285-2

The following table gives the pin numbers and functions for the JP11 connector. This connector follows
the recommendations given in section 13 of the TMS320C62xx Peripherals Reference Guide.

TABLE 40. JTAG Debugger Connector

Pin Number JP15 Function JP16 Function Direction (from M62)
1 CLKS0 CLKS1 I
2 FSR0 FSR1 I/O
3 CLKR0 CLKR1 I/O
4 FSX0 FSX1 I/O
5 CLKX0 CLKX1 I/O
6 Digital 3.3V Power
7 DR0 DR0 I
8 Digital 5V Power
9 DX0 DX0 O
10 Digital Ground Power

Pin Number JP11 Function Direction (from M62)
1 TMS I
2 TRST* I
3 TDI I
5 Digital +3V Power
7 TDO O
9,11 TCK I
13 EMU0 I/O
14 EMU1 I/O
4, 6, 8, 10, 12 Digital ground Power
 Development Package Manual 147

Appendices

148
JP30 – FIFOPort Connector

Connector type: 2mm header

Number of pins: 54

Mating connector: Samtec SQW style

The following table gives the pin numbers and functions for the JP30 connector.

TABLE 41. FIFOPort Connector

Pin Number JP30 Function
Direction (from
M62)

1 Digital 5V Power
2, 44 Ground Power
3-18 Input Data Bits 15-0 I
19 Reserved NA
20 Input Strobe I
21 On-chip Timer 1 Out O
22 On-chip Timer 1 In I
23 On-chip Timer 0 Out O
24 On-chip Timer 0 In I
25-40 Output Data Bits 0-15 O
41 External Interrupt Input I
42 Output Strobe O
43 Digital 3.3V Power
45 Half-full Flag Out O
46 Almost-full Flag Out O
47 Almost-full Level Control In I
48 Full Flag Out O
49 Almost-full Level Control Out O
50 Empty Flag Out O
51 Half-full Flag In I
52 Almost-full Flag In I
53 Empty Flag In I
54 Full Flag In I
 Development Package Manual

TMS320C6201 Limitations and Errata
TMS320C6201 Limitations and Errata

As of this writing, the TMS320C6201 processor has several limitations and errata that can affect the
maximum clock rate at which the processor can successfully run and which may impede the proper
operation of certain software applications. This section discusses limitations discovered in Innovative
Intergration’s testing of early M62 prototype cards, as well as errata announced by Texas Instruments
regarding the current 2.0 revision silicon.

This information is being supplied to current customers and potential users of the M62 in an effort to
keep you informed of the state of ‘C6201 processor development and any performance limitations
imposed on the M62 hardware design. Innovative Intergration will continuously update this informa-
tion as new data becomes available and particularly when new silicon revisions are released by Texas
Instruments to us for testing.

Processor Speed Limitations and External Memory

The current revision 2.0 silicon ‘C6201 devices have bus timing issues which prohibit the use of full
speed external synchronous burst SRAM (SBSRAM) and synchronous DRAM (SDRAM) devices.
These limitations affect the maximum processor speed Innovative will be able to ship with current pro-
cessors, dependent on the external memory configuration of the M62 hardware as ordered by the cus-
tomer.

Specifically, Texas Instruments has announced that SDRAM support is limited to approximately
90MHz operation (180 MHz processor speed), while SBSRAM operation is limited to 133 MHz (133
MHz processor speed). These figures were determined through board level testing at the Texas Instru-
ments facility.

Testing of hardware at Innovative Integration shows that SDRAM is supported at least through 80 MHz
(160 MHz processor speed), while SBSRAM has been tested up to a rate of 80 MHz (160 MHz proces-
sor speed with SBSRAM in half-rate mode). Testing at a processor speed of 133 MHz with SBSRAMs
running in full rate mode has shown a read/write failure rate of about 10-ppm. Texas Instruments has
specified that not all SBSRAMs are reliable in their tests, so it is possible that the devices Innovative is
currently using may not be up to spec. Innovative is in the process of procuring SBSRAM samples of
the manufacturer and type used by Texas Instruments and will continue testing of the external memory
interface to determine which devices are more reliable. In addition, Innovative will be procuring addi-
tional clock source devices, which will allow the testing of intermediate processor speeds (180 MHz,
for example).

Current processors are capable of 200 MHz operation and have been tested at this rate on the M62
design. These tests involve running software strictly from on-chip memory. The external peripheral
interfaces (I/O bus sites, serial ports, FIFOPorts, onboard peripherals, async SRAM, PCI interface) are
unaffected by the memory interface issue as they use less aggressive bus timing.

Innovative Integration’s policy on processor speed is to deliver the fastest possible speed consistent
with the requested external memory configuration on the board. In situations where customers order
external memory, Innovative must downgrade the processor speed to match the memory interface limi-
tations. Current processor speeds available versus memory requirements are as follows:
 Development Package Manual 149

Appendices

150
As Innovative continues testing the memory subsystems of the M62, these rates may change to improve
the memory access and processor speeds.

Texas Instruments Device Errata

The current Texas Instruments device errata for the most current revision silicon TMS32C6201 devices
is attached below. At this time Innovative Integration does not consider these errata to be significant to
the overall operation of the card design.

External Synchronous
Memory Type Delivered Processor Speed
None 200 MHz
SDRAM 160 MHz
SBSRAM 160 MHz (SBSRAM operating in half-rate mode)
 Development Package Manual

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

1

TMS320C6201 SILICON ERRATA
The following is a list of problems on TMS320C6201 3.1 silicon or any lower revision. TI creates a new
document revision when a new silicon bug is discovered. However, TI does NOT update previously edited
files. For example, if you have silicon revision 2.0 and the latest silicon revision is 3.1, you should look at
the latest silicon errata for 3.1, as it will also contain any problems found in silicon version 2.0.

Silicon revision is identified by a code in the lower left-hand corner of the chip. The code is of the format
Cxx-yyww. If xx is 31 then the silicon is revision 3.1. If xx is 20, 21, 30 then the silicon is revision 2.0, 2.1,
OR 3.0 respectively.

The Revision ID of the CPU (which is NOT the same as the silicon revision) can be found in the Revision
ID field of the Control Status Register (CSR). Please refer to the TMS320C62x/C67x CPU and Instruction
Set Reference Guide for details about the Control Status Register. The following table shows the silicon
revision and its CPU Revision ID:

Silicon Revision CPU Revision ID found in CSR

C6201 Revision 2.1 1

C6201 Revision 3.0 2

C6201 Revision 3.1 2

The CPU Revision ID only shows the revision of the CPU. Please note that 6201 Silicon Revision 3.0 and
3.1 have the same CPU Revision ID, since the same CPU is used in both silicon versions. Users should
only refer to the silicon revision number, and not the CPU Revision ID, when using this document.

Please also request the latest TMS320C6201 Peripheral Reference Guide and any Errata.

Note:

� New items in this document are

� Problem 3.1.8

� Problem 3.1.9

� Problems in revision 3.0 silicon not fixed in revision 3.1 have been re-numbered as 3.1.x problems.
This creates gaps in the 3.0.x problem numbering sequence.

� All remaining 3.0.x problems are fixed on revision 3.1.

� All remaining 3.1.x problems will be fixed on a future device. At present there is no specific plan for a
future version.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

2

List Of Bugs
Revision 3.1 Silicon Bugs 3
Problem 3.1.1 DMA: Issues when pausing at a block boundary... 3
Problem 3.1.2 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-frame...... 3
Problem 3.1.3 DMA Multi-frame Split-Mode transfers source address indexing not functional.................... 3
Problem 3.1.4 DMA: Stopped transfer reprogrammed doesn’t wait for sync.. 4
Problem 3.1.5 DMA freezes if post-increment/decrement across port boundary ... 4
Problem 3.1.6 DMA paused during emulation halt 4
Problem 3.1.7 DMA: RSYNC=10000b (DSPINT) doesn’t wait for sync.. 4
Problem 3.1.8 EMIF: Invalid SDRAM access to last 1kByte of CE3... 5
Problem 3.1.9 Cache During Emulation with Extremely Slow External Memory .. 5
Revision 3.0 Silicon Bugs 6
Problem 3.0.8 EMIF: Inverted SDCLK and SSCLK at Speeds above 175 MHz... 6
Problem 3.0.9 CPU: L2-unit long instructions corrupted during interrupt.. 8
Revision 2.1 Silicon Bugs 9
Problem 2.1.1 EMIF: CE Space Crossing on Continuous Request Not Allowed.. 9
Problem 2.1.2 EMIF: SDRAM invalid access.. 9
Problem 2.1.4 DMA: RSYNC cleared late for Frame Sync’d transfer... 9
Problem 2.1.5 McBSP: DXR to XSR copy not generated... 10
Problem 2.1.6 DMA Split-Mode End-of-frame Indexing.. 11
Problem 2.1.7 DMA Channel 0 Multi-frame Split-Mode Incompletion .. 12
Problem 2.1.8 Timer clock output not driven for external clock.. 12
Problem 2.1.9 Power Down pin PD not set high for Power Down 2 mode ... 12
Problem 2.1.10 EMIF: RBTR8 bit not functional ... 12
Problem 2.1.11 McBSP: Incorrect µLaw companding value... 12
Problem 2.1.12 Cache: False cache hit – Extremely rare... 12
Problem 2.1.13 EMIF: HOLD feature improvement on revision 3 .. 13
Problem 2.1.14 EMIF: HOLD request causes problems with SDRAM Refresh.. 13
Problem 2.1.15 DMA Priority Bit Ignored by PBUS... 13
Problem 2.1.16 DMA Split-Mode Receive Transfer Incomplete After Pause ... 13
Problem 2.1.17 DMA Multi-Frame Transfer Data Lost During Stop ... 14
Problem 2.1.18 Bootload: HPI boot feature improvement on revision 3... 14
Problem 2.1.19 PMEMC: Branch from external to internal... 14
Problem 2.1.21 DMA: DMA data block corrupted after start with zero transfer count 15
Revision 2.0 Silicon Bugs 16
Problem 2.0.1 Program Fetch: Cache Modes Not Functional .. 16
Problem 2.0.2 Bootload: Boot from 16-bit and 32-bit Asynchronous ROMs Not Functional 16
Problem 2.0.3 DMA Channel 0 Split Mode Combined with Auto-initialization Performs Improper Re-
Initialization ... 16
Problem 2.0.4 DMA/Program Fetch: Cannot DMA into Program Memory when Running Program From
External ... 16
Problem 2.0.5 Data Access: Parallel Read and Write Accesses to Same EMIF or Internal Peripheral Bus
Location Sequenced Wrong ... 16
Problem 2.0.7 EMIF: Reserved Fields Have Incorrect Values.. 16
Problem 2.0.8 EMIF: SDRAM Refresh/DCAB Not Performed Prior to HOLD Request Being Granted 17
Problem 2.0.9 McBSP New Block Interrupt does not occur for Start of Block 0... 17
Problem 2.0.11 DMA/Internal Data Memory: First load data corrupted when DMA in high priority 17
Problem 2.0.12 McBSP: FRST Improved in 2.1 over 2.0 ... 17
Problem 2.0.13 McBSP: /XEMPTY stays low when DXR Written Late .. 17
Problem 2.0.14 EMIF: Multiple SDRAM CE Spaces: Invalid access after refresh 18
Problem 2.0.18 DMA/Internal Data Memory: conflict data corruption.. 18
Problem 2.0.19 EMIF: Data Setup Times ... 18
Problem 2.0.24 EMIF Extremely Rare Cases Cause an Improper Refresh Cycle to Occur....................... 18

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

3

 REVISION 3.1 SILICON BUGS

Problem 3.1.1 DMA: Issues when pausing at a block boundary

The following problems exist when a DMA channel is paused at a block boundary:

• DMA doesn't flush internal FIFO when a channel is paused across block boundary. As a result, data
from old and new blocks of that channel are in FIFO simultaneously. This prevents other channels
from using the FIFO for high performance until that channel is restarted. Note that data is not lost
when that channel is started again. Internal reference number C601299.

• For DMA transfers with auto-initialization, if a channel is paused just as the last transfer in a block
completes (just as the transfer counter reaches zero), none of the register reloads take place (count,
source address, and destination address). When the same channel is restarted, the channel will not
transfer anything due to the zero transfer count. This problem only occurs at block boundaries.
Internal reference number C601258.

WORKAROUND: Do not pause across block boundary if the internal FIFO is to be used by other channels
for high performance. For DMA transfers with auto-initialization, if a channel is paused with a zero transfer
count, manually reload all registers before restarting the channel.

Problem 3.1.2 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-
frame

If a frame-synchronized transfer is paused in mid-frame and then restarted again, a DMA channel does
not continue the transfer. Instead, the channel waits for synchronization. If the channel is manually
synchronized, it will properly complete the frame, but will immediately begin the transfer of the next frame
too. This behavior occurs for both a software pause (setting START = 10b) and for an emulation halt (with
EMOD = 1). Internal reference number C601257.

WORKAROUND:

• If pausing the DMA channel in software, do the following to restart:

1. Set the RSYNC bit in the Secondary Control Register.
2. Read the Transfer Count Register and then write back to Transfer Count Register. This would

enable the present frame to transferred but will wait for the next sync event to trigger the next
frame transfer.

3. Set START to 01b or 11b.

• If pausing the DMA channel with an emulation halt, do the following to restart:

1. Double-click on the Transfer Count Register and hit enter (rewrite current transfer count).
2. Set the RSYNC STAT bit in the Secondary Control Register (change 0xXXXX4XXX to

0xXXXX1XXX).
3. Run.

***Note that the order of 1 & 2 is critical for an emulator halt (EMOD = 1), but not for the software pause.

Problem 3.1.3 DMA Multi-frame Split-Mode transfers source address indexing not functional

If a DMA channel is configured to do a multi-frame split-mode transfer with SRC_DIR = Index (11b), the
source address is always modified using the Element Index, even during the last element transfer of a
frame. The transfer of the last element in a frame should index the source address using the Frame Index
instead of the Element Index. DST_DIR = 11b functions properly. Internal reference number C601256.

WORKAROUND: For multi-frame transfers, use two DMA channels instead of using the split-mode.
Source Index works properly for non-split-mode transfers.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

4

Problem 3.1.4 DMA: Stopped transfer reprogrammed doesn’t wait for sync

If any non-synchronized transfer (ex: Auto-init Transfer) is stopped, and then the same channel is
programmed to do a Write Synchronized Transfer (ex: Split-mode transfer), the write transfer does not
wait for the Sync event. Internal reference number C601261.

WORKAROUND: Perform a non-synchronized dummy transfer of one element to/from the same location
before starting the synchronized transfer.

Problem 3.1.5 DMA freezes if post-increment/decrement across port boundary

For any DMA transfers with source/dest address post-increment/decrement, if the last element to be
transferred is aligned on a port boundary, then the DMA may freeze before transferring this element. A
port boundary is the address boundary between external memory and program memory, between external
memory and the peripheral address space, or between program memory and the peripheral address
space.

The following conditions cause DMA to freeze:

• For non-sync and frame-sync transfers: if a channel is paused after the second-to-last element is
read, when the channel is then restarted with a request to the address at a port boundary the DMA will
freeze.

• For split-mode transfers or read/write-sync transfers: the DMA will freeze while transferring the
element aligned on the port boundary. A continuous burst transfer with post-increment/decrement
source/dest address does not exhibit this problem. Internal reference number C601300.

WORKAROUND: Do not transfer to boundary addresses if the DMA source/dest address is post-
incremented/decremented.

Problem 3.1.6 DMA paused during emulation halt

When running an auto-initialized transfer, the DMA write state machine is halted during an emulation halt
regardless of the value of EMOD in the DMA Channel Primary Control Register. The read state machine
functions properly in this case. The problem exists only at block boundaries. If EMOD=1, this problem is
irrelevant since the DMA channel is expected to pause during an emulation halt. Internal reference
number C601301.

WORKAROUND: There is no workaround for EMOD=0. Expect DMA transfers to pause when the
emulator stops the processor.

Problem 3.1.7 DMA: RSYNC=10000b (DSPINT) doesn’t wait for sync

If RSYNC in the DMA Channel Primary Control Register is set to Host-port host to DSP interrupt (DSPINT
– 10000b), the DMA channel would do the read transfer without waiting for the sync event. There is not a
problem if WSYNC is set to DSPINT. Internal reference number C601302.

WORKAROUND: Do not synchronized DMA reads to DSPINT. If a DMA read is desired during a Host-
port host to DSP interrupt, set RSYNC in the Primary Control Register to one of the EXT_INT events
instead (EXT_INT4 – EXT_INT7) and have the host trigger an interrupt on that pin rather then by writing to
HPIC.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

5

Problem 3.1.8 EMIF: Invalid SDRAM access to last 1kByte of CE3

If 16 Mbytes of SDRAM (2 64 Mbit in a 1Mx16x4 organization) is used in CE3 then you can have invalid
accesses to the last 1kByte of CE3 (0x03FFFC00).

This occurs when the following is true:

• After a DCAB (Deactivate all pages) to all SDRAM CE spaces (forced by Refresh or MRS command)

• The first access to CE3 is to the last page of CE3 (0x03FFFC00).

Then a page activate will not be issued to CE3. Since the SDRAM in CE3 is in a deactivated state at that
point, invalid accesses will occur. Internal reference number C630280.

WORKAROUND:

Best Case: Avoid designing a board with a 64Mbit (1Mx16x4) SDRAM mapped into CE3.

Alternative: If a 64 Mbit SDRAM is located in CE3, avoid using the last 1kByte in the CE3 memory map
(0x03FFFC00).

Problem 3.1.9 Cache During Emulation with Extremely Slow External Memory

If a program requests fetch packet “A” followed immediately by fetch packet “B”, and all of the following
four conditions are true:

1. A and B are separated by a multiple of 64k in memory (i.e. they will occupy the same cache frame)

2. B is currently located in cache

3. You are using the emulator to single-step through the branch from A to B

4. The code is running off of an extremely slow external memory that transfers one 32-bit word every
8000+ CPU clock cycles (CPU running at 200 MHz)

Then A will be registered as a “miss” and B will be registered as a “hit”. B will not be reloaded into cache,
and A will be executed twice. This condition is extremely rare because B has to be in cache memory, and
must be the next fetch packet requested after A (which is not in cache memory). In addition, this problem
only occurs if you single-step through the branch from A to B using the emulator, AND if the code is
located in an extremely slow external memory. Internal reference number C630283.

WORKAROUND:

• Do not single-step through the branch from A to B if the above conditions are true.

• Do not use an extremely slow external memory (transfers one 32-bit word every 8000+ CPU clock
cycles) if conditions 1, 2, and 3 are true.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

6

REVISION 3.0 SILICON BUGS

Problem 3.0.8 EMIF: Inverted SDCLK and SSCLK at Speeds above 175 MHz

There is a speedpath in the device that causes SDCLK and SSCLK to startup 180 degrees out of phase
(effectively inverted) from the desired waveform. Normally, EMIF outputs are delayed 1/2 CPU clock from
the rising edge of SDCLK/SSCLK to give it adequate hold time while maintaining more than adequate
setup times.

The desired relationship is described in the TMS320C6201B datasheet (SPRS051D, p 37 and p 40) and
illustrated in Figure A and Figure C below. However, in the case where SDCLK/SSCLK becomes inverted
(Figure B and Figure D), control signals only have 1/2 CPU clock of setup to the next SDCLK/SSCLK
rising rather than 3/2 CPU clock of setup. This has two negative affects to interface timing to external
synchronous RAMs.

1) On writes, setup time to RAMs for control signals and write data is reduced by 1 CPU cycle.

Figure A. Write Example - Desired Behavior

tohtosu

CLKOUT1 (CPU Clock)

SS/SDCLK Internal

SS/SDCLK External

Output Signals

Figure B. Write Example - Failing Behavior

toh
tosu

CLKOUT1 (CPU Clock)

SS/SDCLK Internal

SS/SDCLK External

Output Signals

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

7

2) On SBSRAM/SDRAM reads, data will be sampled on the falling edge BEFORE the rising edge that
would be expected. In this case, the input setup time for data at the C6x is reduced by 1 CPU cycle. Note
that this case can be compounded with Case 1). The control signals could be latched one SSCLK/SDCLK
cycle (2 CPU cycles) late by the memories. Thus, the setup could be reduced by up to 3 CPU cycles and
be more than an entire SSCLK/SDCLK late.

Figure C. Read Example - Desired Behavior

tacc
tisu

CLKOUT1 (CPU Clock)

SS/SDCLK Internal

SS/SDCLK External

Read Data

Figure D. Read Example - Failing Behavior

tacc
tisu

CLKOUT1 (CPU Clock)

SS/SDCLK Internal

SS/SDCLK External

Read Data

Note that CLKOUT2 is also affected by this speedpath bug and is 180 degree out of phase. It behaves in
the same way as SDCLK. Internal reference number C601307.

WORKAROUND:

• For prototypes raising the core supply to 1.9-2.1V corrects this problem. We DO NOT recommend this
in boards shipped to customers, since the manufacturing process is not designed to be reliable
outside the normal operating range. This option allows the user to verify current board designs at all
valid frequency ranges.

• Reduce the operating frequency of the TMS320C6201B until SSCLK/SDCLK has the desired
relationship. Typically this occurs at 175 MHz across the range of recommended operating
conditions.

• Since SSCLK and SDCLK are inverted externally relative to each other by design, these signals can
be swapped on external memory interfaces to correct the problem (SSCLK to SDRAM and SDCLK to
SBSRAM). This will cause invalid operation at frequencies below 175 MHz and will not work with
future silicon revisions.

• If CLKOUT2 is used as an SDRAM clock, follow all the workarounds for SDCLK.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

8

ALTERNATE WORKAROUNDS: The following alternate work arounds can help for certain board and
layout configurations.

• Using faster (125 Mhz or PC100) SDRAMs and/or SBSRAMs will reduce the chances of data
corruption and/or increase the frequency at which reliable memory operation can be observed.
Operation is not guaranteed to be reliable across operating conditions and different samples of
memory and 6201B devices due to lot to lot variation on both the memory and the 'C6201B.

• SDCLK/SSCLK can be delayed externally. This can be accomplished either via inverter(s), precision
delay device, or longer board route on the clock line. The idea is to force the external clock to
resemble the desired clock waveform as closely as possible, providing more setup for both reads and
writes.

• You may start the device at a frequency where the skew does not occur and raise the operating
frequency to the desired rate. This must be done at each processor reset. This solution works since
the speed path exists in the reset (non-run time) operation of the SDCLK/SSCLK circuit. Whatever
operations starts at reset is observable until the next reset.

RESOLUTION

• Version 3.1 of silicon will correct this problem.

Problem 3.0.9 CPU: L2-unit long instructions corrupted during interrupt

If an interrupt occurs causing a B-side L-unit (.L2 unit) instruction that writes a long value to be annulled,
the top 8 bits of the result will be written rather than being annulled. This bug only applies to the B-side L-
unit (.L2 unit). A-side L-unit (.L1 unit) functions correctly. Internal reference number C620774

This bug will not affect:

• Customers programming in C with no long data types.

• Customers not using code with long instructions on the .L2-unit.

• Customers only using long instructions on the .L2-unit inside loops 5 or less than 5 cycles long.
(Interrupts are disabled in the 5 delay slots of a branch)

WORKAROUND:

• Disable interrupts using the appropriate compiler switches, or cregister modifications, in the affected C
code.

• Disable interrupts 7 execute packets before any long instructions on the .L2-unit that are NOT in the
delay slots of a branch.

• Use the .L1-unit for long instructions if interrupts are anticipated.

RESOLUTION

• Version 3.1 of silicon will correct this problem.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

9

REVISION 2.1 SILICON BUGS

Problem 2.1.1 EMIF: CE Space Crossing on Continuous Request Not Allowed

Any continuous request of the EMIF cannot cross CE address space boundaries. This condition can
result in bad data read, or writing to the wrong CE. Internal Reference Numbers 2600 & 3421.

WORK-AROUNDS:

CPU Program Fetch: The simplest fix is for all external program to reside within a single CE space.
Alternatively, program fetch flow should not occur across CE spaces. This can be accomplished by
branching on chip in between executing from one CE to another CE.

DMA: All DMA block transfers without read or write synchronization should have all EMIF addresses
within a frame to belong to one CE space. In other words, all read (src) addresses should belong to one
CE space and should not cross CE boundaries. The same applies to write (dst) addresses within a frame.
Note that the source can be in the same CE space or different CE space as the destination. DMA
transfers with read and/or write synchronization together with CE boundaries crossed between frames are
not affected by this bug.

CPU Data Access: External CPU data accesses cannot perform continuous requests and thus are not
affected by this bug.

Problem 2.1.2 EMIF: SDRAM invalid access

An invalid SDRAM access occurs when each of the following is true:

- Two or more SDRAM devices in different CE spaces

- Each SDRAM device has a page activate

- One active page is in bank 0 and the other in bank 1

- Each CE space with SDRAM is accessed (alternating) without a page miss or refresh
occurring (no Deactivate command).

OR

- Two or more SDRAM devices in different CE spaces

- A trickle refresh deactivates both devices

- Before refresh occurs, a request to access one CE space comes in. The refresh will wait until
the first requestor has completed.

- If request to second CE space occurs before refresh occurs, then an invalid access takes
place, since the controller neglects the fact that this space was deactivated.

Internal Reference Numbers 4139, 0335, and 0871.

WORKAROUND: Avoid use of multiple CE spaces of SDRAM within a single refresh period.

Problem 2.1.4 DMA: RSYNC cleared late for Frame Sync’d transfer

In a frame-synchronized transfer, RSYNC is only cleared after the beginning of last write transfer. It should
occur after the start of the first read transfer in the synchronized frame. Internal reference number 0267.

WORKAROUND: Wait until end-of-frame (perhaps using DMAC pins for external status) to issue next
frame synchronization.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

10

Problem 2.1.5 McBSP: DXR to XSR copy not generated

If any element size other than 32 bits is written to the DXR of either serial port, then the register is not
copied to the XSR. Internal reference number 0511.

The following work around is applicable only for non-split mode DMA transfers.

WORKAROUND:

(1) For little-endian mode:

Always write 32 bits to the DXR. When using the DMA, it is possible to perform word transfers, but
increment or decrement the address by one or two bytes using one of the global index registers. If the
serial port is transferring out 16-bit words, which are stored on consecutive half-word boundaries in
memory (either internal or external), the DMA would need to be set up such that it performs word writes to
DXR (ESIZE = 00b). The global index register used would need an element index of 0x0002 (2 bytes). If
an 8-bit data transfer is desired, then element index would need to be 0x0001.

Please note that this workaround assumes that the receive justification, RJUST in the McBSP’s SPCR is
set for right justification (zero-fill or sign-extended). If left justification is chosen for receive data, the DMA
receive src address pointing to DRR should be changed to DRR+3 (which is 0x018C0003 for McBSP0
and 0x01900003 for McBSP1) for byte-size elements and DRR+2 for half-word elements. This ensures
packing data on byte or half-word boundaries for receive data.

Example:
Configure the DMA as follows:
(a) For half-word / byte-size accesses with right justification on receive data:

ch_A: /* for transmit */
src_address = mem_out; dst_address = DXR;
Element_size = WORD
Address_inc_mode = index
Index_reg_value = 2 /* change this to 1 for byte writes */

ch_B : /* for receive */
src_address = DRR; dst_address = mem_in;
Element_size = HALF /* change this to BYTE for 8-b element size */
Address_inc_mode = inc_by_ element_size
/* inc_by_index whose value is as specified for ch_A above will also work */

(b) For half-word / byte-size accesses with left justification on receive data:
Same as (1)(a) above EXCEPT for:
ch_B : /* for receive */
src_address = DRR+3; /* for byte accesses */ OR
 = DRR+2; /* for half-word accesses */

(2) For big-endian mode:

Always write 32 bits to the DXR.
(a) For half-word accesses with right justification on receive data:
ch_A: /* for transmit */
src_address = mem_out;
dst_address = DXR+2; /* 0x018C0006 for McBSP0 or 0x01900006 for McBSP1 */
Element_size = WORD
Address_inc_mode = index
Index_reg_value = 2

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

11

ch_B : /* for receive */
src_address = DRR+2 /* 0x018C0002 for McBSP0 or 0x01900002 for McBSP1 */
dst_address = mem_in;
Element_size = HALF;
Address_inc_mode = = inc_by_ element_size
/* inc_by_index whose value is as specified for ch_A above will also work */

(b) For half-word writes with left justification on receive data:
Same as (2)(a) above EXCEPT for:
ch_B : /* for receive */
src_address = DRR;

(c) For byte-size writes with right justification on receive data:
ch_A: /* for transmit */
src_address = mem_out;
dst_address = DXR+3; /* 0x018C0007 for McBSP0 or 0x01900007 for McBSP1 */
Element_size = WORD
Address_inc_mode = index
Index_reg_value = 1

ch_B : /* for receive */
src_address = DRR+3 /* 0x018C0003 for McBSP0 or 0x01900003 for McBSP1 */
dst_address = mem_in;
Element_size = BYTE;
Address_inc_mode = = inc_by_ element_size
/* inc_by_index whose value is as specified for ch_A above will also work */

(d) For byte-size writes with left justification on receive data:
Same as (2)(c) above EXCEPT for:
ch_B : /* for receive */
src_address = DRR;

Problem 2.1.6 DMA Split-Mode End-of-frame Indexing

If a DMA channel is configured to do a multi-frame split-mode transfer, both the Receive and Transmit
transfers will generate an end-of-frame condition. This will cause the FRAME COND bit to be set multiple
times per frame in the Secondary Control Register of the channel.

Also, if DST_DIR = Index (11b), the end-of-frame condition by both the Receive and Transmit Transfers
will cause a destination address to be incremented using Frame Index, rather than Element Index. The
problem is that BOTH the last element in a frame for the Receive Read Transfer (split source to
destination) AND the last element in a frame for the Transmit Write Transfer (source to split destination)
will cause the destination address to be indexed using the frame index. This should only occur for the last
element in a frame for the Receive Read Transfer. Internal reference number 0559.

WORKAROUND: If the FRAME COND bit is used to generate an interrupt to the CPU and/or the frame
index and the element index on the destination address are not the same for a split-mode transfer, use
two DMA channels.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

12

Problem 2.1.7 DMA Channel 0 Multi-frame Split-Mode Incompletion

If DMA Channel 0 is configured to perform a multi-frame split-mode transfer, it is possible for the last
element of the last frame of the Receive Read to not be transferred. After the last element of the last
frame of the Transmit Write Transfer, the element count is reloaded into the Channel 0 Transfer Counter
Register, which may allow for the Transmit Read Transfer to be initiated. If the read synchronization and
write synchronization are far enough apart in CPU cycles, then it is possible for the DMA to hang (due to
the Transmit Read) before the Receive Write gets its sync event and completes the transmission. Internal
reference number 0558.

WORKAROUND: If a multi-frame split-mode transfer is required, use DMA channel 1, 2, or 3.

Problem 2.1.8 Timer clock output not driven for external clock

When FUNC = 1 (TOUT is a timer pin), if CLKSRC = 0 (external clock source) the TOUT pin is not driven
with TSTAT. The timer still functions correctly, but the output is not seen externally. Internal reference
number 0568.

WORKAROUND: None. Timer functions correctly.

Problem 2.1.9 Power Down pin PD not set high for Power Down 2 mode

The power down pin, PD, only goes high (active) in power down mode 3, not in power down mode 2.
Internal reference number 0537.

WORKAROUND: None. Power down modes function correctly.

Problem 2.1.10 EMIF: RBTR8 bit not functional

If RBTR8=1, a requester with continuous requests will not relinquish control of the EMIF even to a higher
priority requester. Internal reference number 0432.

WORKAROUND: Leave RBTR8 set to the default of 0.

Problem 2.1.11 McBSP: Incorrect µLaw companding value

The C6201 McBSP u-Law/A-Law companding hardware produces an incorrectly expanded u-Law value.
McBSP receives u-Law value 0111 1111, representing a mid-scale analog value. Expanded 16-bit data is
1000 0000 0000 0000, representing a most negative value. Expected value is 0000 0000 0000 0000.
McBSP expands u-Law 1111 1111 (also mid-scale value) correctly. u-Law works correctly for all encoded
values, except for 0x7f. Internal Reference Number 0651.

Problem 2.1.12 Cache: False cache hit – Extremely rare

If a program requests fetch packet “A” followed immediately by fetch packet “B”, and the following are
true:

- A and B are separated by a multiple of 64k in memory (i.e. they will occupy the same cache
frame)

- B is currently located in cache

Then A will be registered as a “miss” and B will be registered as a “hit”. B will not be reloaded into cache,
and A will be executed twice. This condition is extremely rare because B has to be in cache memory, and
must be the next fetch packet requested after A (which is not in cache memory). Internal Reference
Number 4372.

WORKAROUND: The program should be re-linked to force A and B to not be a multiple of 64k apart.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

13

Problem 2.1.13 EMIF: HOLD feature improvement on revision 3

This is documented as a difference between the 320C6201 revision 2.x (and earlier) and revision 3.0 (and
later).

The HOLD feature of the ‘C6201 currently will not respond to a HOLD request if the NOHOLD bit is set at
the time of the HOLD request, but is then cleared while the HOLD request is pending. In other words, for
a HOLD request to be recognized, a high to low transition must occur on the HOLD input while the
NOHOLD bit is not set. Future revisions of the device will operate as described below.

If NOHOLD is set and a HOLD request comes in, the C6x will ignore the HOLD request. If while the HOLD
request is still asserted the NOHOLD bit is then de-asserted, the HOLD will be acknowledged as
expected. Internal reference number 0101.

WORKAROUND: In order to recognize a pending HOLD request when the state of the NOHOLD bit is
changed from 1 to 0, a pulse must be generated on the input HOLD line. This can be done by logically
OR-ing a normally low general purpose output (DMAC can be used) with the HOLD request signal from
the requestor, and creating a high pulse on the general purpose output pin.

Problem 2.1.14 EMIF: HOLD request causes problems with SDRAM Refresh

If the HOLD interface is used in a system with SDRAM, there are some situations that are likely to occur.

If the NOHOLD bit is not set and an external requestor attempts to gain control of the bus via the HOLD
signal of the EMIF at the exact same time as the EMIF is issuing a SDRAM Refresh command, the HOLD
request is never recognized. Even if the NOHOLD bit is set in the EMIF Global Control Register, SDRAM
Refreshes are still disabled as long as the HOLD request is pending. A single Refresh after receiving the
HOLD request is issued, but no additional Refreshes are issued until the HOLD request is removed. The
C6x still owns the bus since the NOHOLD bit is set.

In addition, if an SDRAM burst is started just prior to a HOLD request, it is possible that the request will
not be recognized until a refresh occurs. This will potentially allow for the HOLD request to be ignored for
several micro-seconds. Internal reference number 0757 and 0777.

WORKAROUND: Do not allow a requestor to activate the HOLD line without acknowledging it for longer
than the SDRAM refresh period. A workaround can be accomplished by keeping the NOHOLD bit set and
software poll the HOLD bit of the EMIF Global Control Register. Software polling of the HOLD bit in the
EMIF Global Control Register will indicate when a HOLD request has been received (this can be done in
the SD_INT service routine or Timer interrupt service routine).

Upon detecting a HOLD request, SDRAM refreshes are disabled, NOHOLD bit is cleared, and a pulse is
generated on the input HOLD signal (can use DMACx as a general purpose output pin in combination with
the requestors HOLD signal). Then NOHOLD can be set and SDRAM refreshes enabled in anticipation of
the next HOLD request.

Problem 2.1.15 DMA Priority Bit Ignored by PBUS

The CPU always has priority over the DMA when accessing peripherals. The DMA PRI bit is ignored and
treated as “0”. Internal reference number 0540.

WORKAROUND: Leave sufficient gaps in CPU accesses to the PBUS to allow the DMA time to gain
adequate access.

Problem 2.1.16 DMA Split-Mode Receive Transfer Incomplete After Pause

If the DMA is performing a split-mode transfer and the channel is paused after all Transmit Reads in a
frame are completed but before the Receive Reads are completed, then the Receive Transfer will not
complete after the channel is restarted. Internal reference number 0606.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

14

WORKAROUND: Do not pause a split-mode transfer at the end of a frame unless the frame has
completed.

Problem 2.1.17 DMA Multi-Frame Transfer Data Lost During Stop

If the DMA is stopped while performing an unsynchronized, multi-frame transfer, all of the read data may
not be written. The data will be written when the channel is restarted. This case will only occur when the
frame size (element count) is 10 or less and data elements from multiple frames are in the FIFO when it is
stopped. Internal reference number 0789.

WORKAROUND: Keep frame size > 10, synchronize the frame (FS = 1), or do not stop the transfer.

Problem 2.1.18 Bootload: HPI boot feature improvement on revision 3

This is documented as a difference between the TMX320C6201 revision 2.x (and earlier) and revision 3.0
(and later).

Currently during HPI boot, all accesses to program memory are treated as writes by the PMEMC. This
means that the host may not read the internal program memory space, as doing so will overwrite the
memory space, usually with all zeros. The PMEMC will be changed to differentiate between reads and
writes to program memory during boot. Internal reference number 0604.

Problem 2.1.19 PMEMC: Branch from external to internal

The program flow is corrupted after branching from external memory to internal program memory when
the following are true:

- CPU is executing from external memory

- A CPU stall occurs that holds the CPU until all pending program fetches complete. CPU stalls
may be caused by:

- External data access

- Multi-cycle NOPs

- Prolonged data memory bank conflict with DMA

- Multiple accesses to on-chip peripherals (not likely to cause this problem)

- A branch to internal program memory is taken before a new fetch packet is requested (i.e.
during the same fetch packet that is executed when the CPU stalls.

The CPU will branch correctly to the internal memory location and correctly execute the code located
there. When the branch is executed to return to external memory, the CPU will not complete the branch
properly and the program will crash. Internal reference number 0958

WORKAROUND: There are several workaround options, depending on the situation that causes the
failure. One or more of the following should be used to circumvent the problem:

- If the problem arises during an interrupt, move IST to external memory (same CE as code).

- If the problem occurs after a branch, delay the branch instruction with single-cycle NOPs or
extend the delay slots to span multiple fetch packets (i.e. follow the branch instruction with
parallel NOPs).

- If an external data access is causing the CPU stall, place data in internal data memory.

- If a multi-cycle NOP is causing the stall, change to multiple single-cycle NOPs.

- If stall is due to the CPU being starved, change the DMA priority to be lower than that of the
CPU.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

15

Problem 2.1.21 DMA: DMA data block corrupted after start with zero transfer count

If DMA is stopped after it has been started with a zero transfer count, then reprogrammed and started
again, the first element of the block will be corrupted. Internal reference number 0242.

WORKAROUND: Make sure the transfer count is not near zero when starting the DMA.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

16

REVISION 2.0 SILICON BUGS

Problem 2.0.1 Program Fetch: Cache Modes Not Functional

WORK-AROUND: Use internal program memory in mapped mode.

Problem 2.0.2 Bootload: Boot from 16-bit and 32-bit Asynchronous ROMs Not Functional

16-bit wide ROM mode and 32-bit wide asynchronous mode work in run time without bugs. The problem
is only in boot. . Internal Reference Number 3088.

WORK-AROUND: Place all code in the lowest byte of the boot ROM.

Problem 2.0.3 DMA Channel 0 Split Mode Combined with Auto-initialization Performs Improper Re-
Initialization

The source address (transmit read address) is reset too early when both split mode and auto-initialization
are enabled. The bug exists on DMA channel 0 only. Internal Reference Number 3481.

WORK-AROUND: Substitute one of the other channels for channel 0 when this configuration is desired.

Problem 2.0.4 DMA/Program Fetch: Cannot DMA into Program Memory when Running Program
From External

Performing a DMA transfer into program memory while running from off-chip can cause invalid program
data to read by the CPU. Internal Reference Number 2978.

WORK-AROUND: DMA into program memory only when running from internal program memory.

Problem 2.0.5 Data Access: Parallel Read and Write Accesses to Same EMIF or Internal Peripheral
Bus Location Sequenced Wrong

This bug occurs under the following conditions:

− A load and store are in the same execute packet. And Either

− The addresses both point to off-chip memory through the EMIF, and the load has a destination
register in side A (thus the store would have a source register in side B). Or

− The addresses both point to the peripheral bus, and the load has a destination register in side B
(thus the store would have a source register in side A).

When these conditions occur, the store occurs first rather than the load. In general, this will only cause an
error if both the load and store addresses are the same. This bug DOES NOT occur if both accesses are
to internal data memory. Internal Reference Number 3087.

WORK-AROUND: Avoid loading and storing the same address on the same cycle.

Problem 2.0.7 EMIF: Reserved Fields Have Incorrect Values

Fields in Bits 15:14 of EMIF CE Space control registers are writeable. They should be read only and have
a 0 value. Bits 5:4 of EMIF SDRAM control register are 11b rather than 0. Internal Reference Number s
3248, 3283.

WORK AROUND: Mask these values if 0’s are expected and to only write 0’s to reserved fields.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

17

Problem 2.0.8 EMIF: SDRAM Refresh/DCAB Not Performed Prior to HOLD Request Being Granted

SDRAM is left in the current state when an external HOLD is granted. SDRAM refresh/DCAB is
necessary if an interface to a shared memory external SDRAM controller is desired. Internal Reference
Number 3249.

WORK-AROUND: Make sure the external controller performs a refresh/DCAB before performing SDRAM
accesses.

Problem 2.0.9 McBSP New Block Interrupt does not occur for Start of Block 0

When end-of-block interrupt is selected ((R/X)INTM=01b), does not occur at end of frame (i.e. before
block 0). Internal reference number 4357.

WORK-AROUND: This interrupt is used when on-the-fly channel selection/enabling is being performed. A
static channel selection/enabling avoids this.

Problem 2.0.11 DMA/Internal Data Memory: First load data corrupted when DMA in high priority

In the case of a single load from A side or B side followed by two loads in parallel from both sides, and in
concert with a DMA high priority access to the same bank as the parallel load, the DMEMC provides
corrupt data for that first load. Internal Reference Number 3858.

Example: LDW .D1 *A3, A4 ; A4 gets corrupt data due to the bug

LDW .D2 *B3, B4

 || LDW .D1 *A6, A7

WORK-AROUND: Avoid high priority DMA transfers to/from internal data memory during these
conditions.

Problem 2.0.12 McBSP: FRST Improved in 2.1 over 2.0

The following enhancements were made in 2.1.

When /FRST transitions to a 1, the first frame sync is generated after 8 CLKG clocks. The 2.0
implementation was such that the first frame sync was generated after FPER+1 number of CLKG clocks.

/FRST=1 is valid only when /GRST=1. In other words the user has to set /FRST=1 only after /GRST=1. If
not, write to /FRST=1 is ignored or rather a zero is forced on /FRST by the logic.

During normal operation, when /FRST=1 and /GRST=1, and now the user puts the sample rate generator
in reset (/GRST=0) without first clearing the /FRST bit to zero, then the logic will force a zero to /FRST bit
before shutting down the sample rate generator.

Problem 2.0.13 McBSP: /XEMPTY stays low when DXR Written Late

/XEMPTY goes low and stays low when DXR was written on either the last bit or next to last bit of the
previous word being transferred to DX. Internal Reference Number 3383.

TMS320C6201 Silicon Errata

© Texas Instruments 12 May, 1999

Redistribution or alteration not permitted.

18

Problem 2.0.14 EMIF: Multiple SDRAM CE Spaces: Invalid access after refresh

This bug exists only in those systems that have SDRAMs in more than one CE space. When there are two
SDRAM accesses performed to two CE spaces, followed by a refresh, the pages in all CE spaces with
SDRAM are de-activated. The first CE space to be accessed after the refresh gets activated correctly. The
bug is that if the second CE space is accessed on the same page as before the refresh, it will not get
activated before the read or write is attempted. Internal Reference Number 3952.

WORKAROUND: Avoid use of multiple CE spaces of SDRAM within a single refresh period.

Problem 2.0.18 DMA/Internal Data Memory: conflict data corruption

This bug occurs when the CPU has high priority and is accessing a bank with word access (load or store)
followed by similar (load or store) halfword access, and the DMA is also accessing the same bank
simultaneously with word accesses:

Example: LDW .D1 *A3, A4

LDH .D2 *A3, A5; A DMA to the bank containing never completes

; but the DMA continues as if it did

The data transfer done by the DMA is corrupted in halfwords (or rather not updated) when the DMA
transfer is complete. Internal Reference Number 4195.

WORKAROUND: When DMAing to/from internal memory with DMA in low priority, use half-word or byte
element size transfers. Alternatively, avoid the above code sequence during DMA transfers.

Problem 2.0.19 EMIF: Data Setup Times

The data setup time for the external memory interface is listed in the February 21, 1998 Advanced
Information TMSX320C6201 Data Sheet as 2 ns, 3ns, and 2ns for Full Rate SBSRAM, ½ Rate SBSRAM,
and SDRAM respectively. In revision 2.0 of silicon, these values are to 4.8, 6.0, and 6.4ns respectively,
from worst-case simulation data (low voltage, high temperature, worst case process conditions.)

WORKAROUND: In room temperature operation we have not seen these setup times affect operation
except in the case of SDRAM where it may be limited to 80-95 MHz.

Problem 2.0.24 EMIF Extremely Rare Cases Cause an Improper Refresh Cycle to Occur.

If a trickle refresh is waiting for the EMIF, and the refresh timer counts down and makes the refresh urgent
JUST AS the EMIF grants the request, then CE is held low for only 1/2 SDCLK cycle during the deactivate
command before the refresh. This will result in an invalid deactivate command. Since the SDRAM did not
deactivate the open page, the next activate command following the refresh will not be executed by the
SDRAM. This will cause any subsequent accesses to go to the non-deactivated page. This will cause
corrupt data read and writes if the page to be opened after the refresh was not the same page that was
open before the refresh. Internal Reference Number 3453.

WORKAROUND: Increase the refresh period.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

1

TMS320C6701 SILICON ERRATA
The following is a list of problems on TMS320C6701 silicon. TI creates a new document revision when a
new silicon bug is discovered. However, TI does NOT update previously edited files. For example, if you
have silicon revision 0.0 and the latest silicon revision is 1.0, you should look at the latest silicon errata for
1.0, as it will also contain any problems found in silicon version 0.0.

Silicon revision is identified by a code in the lower left-hand corner of the chip. The code is of the format
Cxx-yyww. If xx=10, the silicon is revision 1. If no code is found, or if xx=00, the silicon is revision 0.

The Revision ID of the CPU (which is NOT the same as the silicon revision) can be found in the Revision
ID field of the Control Status Register (CSR). Please refer to the TMS320C62x/C67x CPU and Instruction
Set Reference Guide for details about the Control Status Register. The following table shows the silicon
revision and its CPU Revision ID:

Silicon Revision CPU Revision ID found in CSR

C6701 Revision 0.0 1

C6701 Revision 1.0 2

The CPU Revision ID only shows the revision of the CPU. Users should only refer to the silicon revision
number, and not the CPU Revision ID, when using this document.

Please also request the latest TMS320C6000 Peripherals Reference Guide and any Errata.

Note:

� New items in this document is

� Changes to the TMS320C6701 datasheet (SPRS067C)

� Problem 0.0.10 description is modified

� Problems in revision 0.0 silicon not fixed in revision 1.0 have been re-numbered as 1.0.x problems:

� Problem 0.0.16 is re-numbered as 1.0.1.

� Problem 0.0.17 is re-numbered as 1.0.2.

� All remaining 0.0.x problems are fixed on revision 1.0.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

2

CHANGES TO THE TMS320C6701 DATA SHEET (SPRS067C)

JTAG TEST-PORT TIMING (p. 71)

‘C6201,
‘C6201BNO. PARAMETER

MIN MAX
UNIT

1 Tc(TCK) Cycle time, TCK 50 ns
4 Th(TCKH-TDIV) Hold time, TDI/TMS/TRST valid after TCK high 9 ns

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

3

Figure 16. SBSRAM Read Timing (1/2 Rate SSCLK)*

BE1 BE2 BE3 BE4

A1 A2 A3 A4

Q1 Q2 Q3 Q4

1211

109

65

43

21

8
7

SSCLK

CE_

BE_ [3:0]

EA [21:2]

ED [31:0]

SSADS_

SSOE_

SSWE_

Figure 17. SBSRAM Write Timing (1/2 Rate SSCLK)*

BE1 BE2 BE3 BE4

A1 A2 A3 A4

Q1 Q2 Q3 Q4

1615

109

1413

65

43

21

SSCLK

CE_

BE_ [3:0]

EA [21:2]

ED [31:0]

SSADS_

SSOE_

SSWE_

* The /CEx output setup and hold times are guaranteed to be accurate relative to the clock cycle to which
they are referenced, since these timings are specified as minimums. However, the CE output setup and
hold time may be greater than that shown in the datasheet in multiples of P ns. In other words, for output
setup time, the /CEx transition from high to low may happen P, 2P,…, or nP ns before the time specified
by the datasheet. Similarly, for output hold time, the /CEx low to high transition may happen P, 2P, …, or
nP ns after the time specified by the datasheet. This is indicated by the period of uncertainty for specs 1
and 2 in Figure 16 and Figure 17 above.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

4

List Of Bugs
Changes to the TMS320C6701 Data Sheet (SPRS067C) ... 2
Revision 1 Silicon Bugs 5
Problem 1.0.1 EMIF: Invalid SDRAM access to last 1kByte of CE3... 5
Problem 1.0.2 Cache During Emulation with Extremely Slow External Memory .. 5
Problem 1.0.3 DMA: Split-Mode transfers corrupted if channel 1, 2, 3 are stopped..................................... 5
Revision 0 Silicon Bugs 7
Problem 0.0.1 DATA MEMORY CONTROLLER: LDDW Bug.. 7
Problem 0.0.2 Multi-cycle stalls during internal data memory bank conflicts.. 8
Problem 0.0.3 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-frame...... 8
Problem 0.0.4 DMA Multi-frame Split-Mode transfers source address indexing not functional.................... 9
Problem 0.0.5 DMA: Issues when pausing at a block boundary... 9
Problem 0.0.6 DMA: Stopped transfer reprogrammed doesn’t wait for sync.. 9
Problem 0.0.7 DMA freezes if post-increment/decrement across port boundary ... 9
Problem 0.0.8 DMA paused during emulation halt 10
Problem 0.0.9 DMA: RSYNC=10000b (DSPINT) doesn’t wait for sync.. 10
Problem 0.0.10 CPU: L-unit interprets some integer instructions as double precision floating point
instructions.. 10
Problem 0.0.11 CPU: S-unit interprets some integer instructions as double precision floating point
instructions.. 11
Problem 0.0.12 CPU: MPYSP/MPYDP underflow failure ... 11
Problem 0.0.13 CPU: DPSP underflow failure.. 12
Problem 0.0.14 CPU: DPTRUNC/DPINT overflow failure .. 12
Problem 0.0.15 CPU: L-unit floating point instructions failed to execute after ADDDP/SUBDP re-execution13

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

5

 REVISION 1 SILICON BUGS

Problem 1.0.1 EMIF: Invalid SDRAM access to last 1kByte of CE3

If 16 Mbytes of SDRAM (2 64 Mbit in a 1Mx16x4 organization) is used in CE3 then you can have invalid
accesses to the last 1kByte of CE3 (0x03FFFC00).

This occurs when the following is true:

• After a DCAB (Deactivate all pages) to all SDRAM CE spaces (forced by Refresh or MRS command)

• The first access to CE3 is to the last page of CE3 (0x03FFFC00).

Then a page activate will not be issued to CE3. Since the SDRAM in CE3 is in a deactivated state at that
point, invalid accesses will occur. Internal reference number C630280.

WORKAROUND:

Best Case: Avoid designing a board with a 64Mbit (1Mx16x4) SDRAM mapped into CE3.

Alternative: If a 64 Mbit SDRAM is located in CE3, avoid using the last 1kByte in the CE3 memory map
(0x03FFFC00).

Problem 1.0.2 Cache During Emulation with Extremely Slow External Memory

If a program requests fetch packet “A” followed immediately by fetch packet “B”, and all of the following
four conditions are true:

1. A and B are separated by a multiple of 64k in memory (i.e. they will occupy the same cache frame)

2. B is currently located in cache

3. You are using the emulator to single-step through the branch from A to B

4. The code is running off of an extremely slow external memory that transfers one 32-bit word every
8000+ CPU clock cycles (CPU running at 200 MHz)

Then A will be registered as a “miss” and B will be registered as a “hit”. B will not be reloaded into cache,
and A will be executed twice. This condition is extremely rare because B has to be in cache memory, and
must be the next fetch packet requested after A (which is not in cache memory). In addition, this problem
only occurs if you single-step through the branch from A to B using the emulator, AND if the code is
located in an extremely slow external memory. Internal reference number C630283.

WORKAROUND:

• Do not single-step through the branch from A to B if the above conditions are true.

• Do not use an extremely slow external memory (transfers one 32-bit word every 8000+ CPU clock
cycles) if conditions 1, 2, and 3 are true.

Problem 1.0.3 DMA: Split-Mode transfers corrupted if channel 1, 2, 3 are stopped

There is a problem with stopping DMA channel 1, 2, or 3 when operating in split-mode transfers. If the
DMA split-mode receive and transmit transfers are not in sync with one another when the channel is
stopped, and then the same DMA channel is programmed for a new split-mode transfer, the new transfer
will execute correctly but may not terminate completely. This problem does not exist in channel 0.
Internal reference number C621764.

WORKAROUND: Do not stop DMA channels 1, 2, and 3 when they are operating in split-mode.

Or manually force the number of elements received and transmitted transfers to be equal. Split-mode is
most commonly used with the on-chip McBSPs. In typical McBSP applications, the transmit data is two
elements ahead of the receive data. Therefore to stop the serial transfer do the following:

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

6

 - Reset the McBSP to prevent additional sync events

 - Set RSYNC_STAT twice for the DMA channel to force two receive transfers

 - Stop the DMA channel

In order to ensure that the same number of elements are transferred, the source and destination
addresses can be checked.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

7

REVISION 0 SILICON BUGS

Problem 0.0.1 DATA MEMORY CONTROLLER: LDDW Bug

LDDW from external data memory (any CE space) fetches only the lower 32 bits instead of 64 bits.
However, LDDW from internal data memory works correctly and fetches the full 64-bit data, except for any
one of the following cases listed below, in which LDDW from internal data memory incorrectly fetches only
the lower 32 bits instead of 64 bits:

(1) Code sequence causes

Two successive execution packets with either one of the following patterns can cause the LDDW error:

Packet A-Side Instruction B-Side Instruction Comments

1 LDDW Any store instruction Internal data memory bank conflict

2 Any load instruction Any store instruction Internal data memory bank conflict

OR

Packet A-Side Instruction B-Side Instruction Comments

1 Any load/store LDDW Internal data memory bank conflict

2 Any load/store Any load Internal data memory bank conflict

Both of the above code sequences cause the LDDW instruction to return corrupted data.

(2) Step mode causes

Stepping through any code sequence that contains an LDDW instruction will cause the internal LDDW
error.

(3) DMA causes

If a DMA access causes an internal data memory bank conflict with another load or store instruction in the
same execute packet with an LDDW instruction, the LDDW instruction will return only the lower 32 bits of
data. This problem only occurs if DMA has priority, since the bug is caused by the CPU stalling. If the
CPU has priority, the CPU will not stall (unless you also have cause 1 or cause 2 happening). Internal
reference number 1, 3.

WORKAROUND: Do not use LDDW to fetch data from external memory. When using the compiler,
allocate all accessed data to internal data memory since there is no guarantee that the compiler will not
use the LDDW instruction. In addition, some of the Double Precision math library functions in rts6701.lib
and rts6701e.lib are found to use the LDDW instruction. In those cases try to use the equivalent single-
precision library function. For example, use "float logf(float x)" instead of "double log(double x)". When
using hand-coded or linear assembly code, if it is not possible to allocate data to internal data memory,
avoid using the LDDW instruction to access this data. LDB, LDH, and LDW can all be used instead.

In order to use LDDW from internal memory without failure, the user must ensure that the code pattern
outlined in (1) above is never generated (note that the data bank conflicts are required in this pattern for a
failure to occur).

Users may single-step code to debug, but DO NOT single step over the execution of an LDDW instruction
and all 5 of the cycles of latency of the LDDW instruction. Use a breakpoint after the 5-cycle latency to
resume single stepping of the program.

To use DMA in programs that use LDDW from internal memory, the user must ensure that the execute
packets that contain a LDDW instruction do NOT contain another load or store access, so that DMA
accesses will not cause internal data memory bank conflicts.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

8

Problem 0.0.2 Multi-cycle stalls during internal data memory bank conflicts

Program flow will get corrupted data if ALL of the following are true:

- The program contains an execute packet with a B-side internal data load.

- This B-side internal data load is followed by an execute packet with a parallel load that
generates an internal data bank conflict (address bits 1, 2, 3, and 15 are the same between
the loads).

- AND a multi-cycle stall occurs during the execute of the parallel load packet.

The data for the first B-side load will be corrupted by the data for the second B-side load. The original B-
side load data will be lost.

Note in this description B-side refers to the destination register for the load, NOT the D-unit or address
register. Internal reference number 2.

WORKAROUND:

(1) Ensure the code does not contain any internal data bank conflicts (a brute-force method is to ensure
there are no execute packets with parallel loads)

(2) Ensure the code that includes parallel loads with internal data bank conflicts will not have any stalls
generated (due to external data fetches, external instruction fetches, high priority DMA activity, user
single-steps or breakpoints, or any other cause of a stall). In that case, only a single-cycle stall will occur
due to data bank conflicts. The program will work correctly.

Problem 0.0.3 DMA: Transfer incomplete when pausing a Frame Synchronized transfer in mid-
frame

If a frame-synchronized transfer is paused in mid-frame and then restarted again, a DMA channel does
not continue the transfer. Instead, the channel waits for synchronization. If the channel is manually
synchronized, it will properly complete the frame, but will immediately begin the transfer of the next frame
too. This behavior occurs for both a software pause (setting START = 10b) and for an emulation halt (with
EMOD = 1). Internal reference number C601257.

WORKAROUND:

• If pausing the DMA channel in software, do the following to restart:

1. Set the RSYNC bit in the Secondary Control Register.
2. Read the Transfer Count Register and then write back to Transfer Count Register. This would

enable the present frame to transferred but will wait for the next sync event to trigger the next
frame transfer.

3. Set START to 01b or 11b.

• If pausing the DMA channel with an emulation halt, do the following to restart:

1. Double-click on the Transfer Count Register and hit enter (rewrite current transfer count).
2. Set the RSYNC STAT bit in the Secondary Control Register (change 0xXXXX4XXX to

0xXXXX1XXX).
3. Run.

***Note that the order of 1 & 2 is critical for an emulator halt (EMOD = 1), but not for the software pause.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

9

Problem 0.0.4 DMA Multi-frame Split-Mode transfers source address indexing not functional

If a DMA channel is configured to do a multi-frame split-mode transfer with SRC_DIR = Index (11b), the
source address is always modified using the Element Index, even during the last element transfer of a
frame. The transfer of the last element in a frame should index the source address using the Frame Index
instead of the Element Index. DST_DIR = 11b functions properly. Internal reference number C601256.

WORKAROUND: For multi-frame transfers, use two DMA channels instead of using the split-mode.
Source Index works properly for non-split-mode transfers.

Problem 0.0.5 DMA: Issues when pausing at a block boundary

The following problems exist when a DMA channel is paused at a block boundary:

• DMA doesn't flush internal FIFO when a channel is paused across block boundary. As a result, data
from old and new blocks of that channel are in FIFO simultaneously. This prevents other channels
from using the FIFO for high performance until that channel is restarted. Note that data is not lost
when that channel is started again. Internal reference number C601299.

• For DMA transfers with auto-initialization, if a channel is paused just as the last transfer in a block
completes (just as the transfer counter reaches zero), none of the register reloads take place (count,
source address, and destination address). When the same channel is restarted, the channel will not
transfer anything due to the zero transfer count. This problem only occurs at block boundaries.
Internal reference number C601258.

WORKAROUND: Do not pause across block boundary if the internal FIFO is to be used by other channels
for high performance. For DMA transfers with auto-initialization, if a channel is paused with a zero transfer
count, manually reload all registers before restarting the channel.

Problem 0.0.6 DMA: Stopped transfer reprogrammed doesn’t wait for sync

If any non-synchronized transfer (ex: Auto-init Transfer) is stopped, and then the same channel is
programmed to do a Write Synchronized Transfer (ex: Split-mode transfer), the write transfer does not
wait for the Sync event. Internal reference number C601261.

WORKAROUND: Perform a non-synchronized dummy transfer of one element to/from the same location
before starting the synchronized transfer.

Problem 0.0.7 DMA freezes if post-increment/decrement across port boundary

For any DMA transfers with source/dest address post-increment/decrement, if the last element to be
transferred is aligned on a port boundary, then the DMA may freeze before transferring this element. A
port boundary is the address boundary between external memory and program memory, between external
memory and the peripheral address space, or between program memory and the peripheral address
space.

The following conditions cause DMA to freeze:

• For non-sync and frame-sync transfers: if a channel is paused after the second-to-last element is
read, when the channel is then restarted with a request to the address at a port boundary the DMA will
freeze.

• For split-mode transfers or read/write-sync transfers: the DMA will freeze while transferring the
element aligned on the port boundary. A continuous burst transfer with post-increment/decrement
source/dest address does not exhibit this problem. Internal reference number C601300.

WORKAROUND: Do not transfer to boundary addresses if the DMA source/dest address is post-
incremented/decremented.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

10

Problem 0.0.8 DMA paused during emulation halt

When running an auto-initialized transfer, the DMA write state machine is halted during an emulation halt
regardless of the value of EMOD in the DMA Channel Primary Control Register. The read state machine
functions properly in this case. The problem exists only at block boundaries. If EMOD=1, this problem is
irrelevant since the DMA channel is expected to pause during an emulation halt. Internal reference
number C601301.

WORKAROUND: There is no workaround for EMOD=0. Expect DMA transfers to pause when the
emulator stops the processor.

Problem 0.0.9 DMA: RSYNC=10000b (DSPINT) doesn’t wait for sync

If RSYNC in the DMA Channel Primary Control Register is set to Host-port host to DSP interrupt (DSPINT
– 10000b), the DMA channel would do the read transfer without waiting for the sync event. There is not a
problem if WSYNC is set to DSPINT. Internal reference number C601302.

WORKAROUND: Do not synchronized DMA reads to DSPINT. If a DMA read is desired during a Host-
port host to DSP interrupt, set RSYNC in the Primary Control Register to one of the EXT_INT events
instead (EXT_INT4 – EXT_INT7) and have the host trigger an interrupt on that pin rather then by writing to
HPIC.

Problem 0.0.10 CPU: L-unit interprets some integer instructions as double precision floating point
instructions

The floating point .L unit incorrectly interprets an integer instruction as a double precision floating point
instruction. As a result, the .L unit fails to execute a floating-point instruction that follows. The following
set of .L unit integer instructions may result in a subsequent .L unit floating point instruction failing to
execute:

Integer .L unit Instruction Interpreted by Floating Point .L unit as
CMPGT (all opfields)† ADDDP / SUBDP
CMPGTU (all opfields)† ADDDP / SUBDP
SAT ADDDP / SUBDP

† Code can be written so that the CMPGT and CMPGTU opcodes are not obvious. CMPLT/CMPLTU and
CMPGT/CMPGTU are pseudo operations of each other, in the case when the operands are incorrectly arranged.
For example, for the piece of code below:

CMPLT .L1x B1,A0,A0 ; src1 should not use the cross path, pseudo-op will be substituted
CMPGT .L1x A1,8,A1 ; only src1 can be a constant, pseudo-op will be substituted

The assembler leaves the instructions above in the list file (.lst), but performs the following operations instead:
CMPGT .L1x A0,B1,A0 ; only src2 uses the cross path
CMPLT .L1x 8,A1,A1 ; only src1 could be a constant

When determining which int/fp instruction scenarios will result in a floating point failure, treat the integer
instruction as if it were the floating point instruction specified in the table above and refer to Table 6-15 in
the TMS320C62x/C67x CPU and Instruction Set Reference Guide. When applying the rules of the hazard
table, note that it is only possible for a subsequent same-unit floating point instruction to fail.

An example failing code sequence is:

 LDH .D1T1 *+A7(2),A5
|| CMPGT .L1 A4,A0,A4
|| SUB .L2X B0,A5,B5

 XOR .S1 1,A4,A4
|| INTSP .L2 B5,B4
|| INTSP .L1 A5,A7 ; failing instruction

The failure occurs on INTSP.L1, because the .L1 FP unit is still busy executing the false ADDDP triggered
by the CMPGT.L1 executed in the previous cycle. Internal reference number 4.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

11

WORKAROUND: For any code sequences with an integer CMPGT/CMPGTU/SAT in the first execute
packet and a floating point operation to the same .L unit in the second execute packet, ensure that if the
integer instruction were treated as an ADDDP/SUBDP instruction, the second execute packet would not
encounter any hazards as outlined in Table 6-15 of the TMS320C62x/C67x CPU and Instruction Set
Reference Guide.

Problem 0.0.11 CPU: S-unit interprets some integer instructions as double precision floating point
instructions

The .S unit instruction decode block incorrectly instructs the floating-point pipeline to perform a double
precision floating-point operation as the result of an integer instruction. A subsequent floating-point
instruction to the same .S unit then fails to execute. The following set of .S unit integer instructions may
cause a subsequent .S unit floating-point instruction to fail to execute:

SHR (opfields 110110 or 110100)

CLR (opfields 11 or 111111)

EXT (constant form or register form)

If the SHR/CLR/EXT instruction is not followed by any other non-SHR/CLR/EXT integer instruction to the
same .S unit, a subsequent floating-point instruction to the same .S unit may fail to execute. This applies
even if more than one execute packet exists between the SHR/CLR/EXT instruction and the floating-point
instruction.

An example failing code sequence is:

ADD .L2 4, B5, B5
|| [A2] STW .D2T2 B6,*B3
|| [A1] SUB .D1 A1, 1, A1
|| SHR .S1 A6, 14, A8

 NOP 1

 ADD .L2 B9, B4, B4
|| MPYU .M1 A8, A3, A8

 ADDSP .L1 A4, A5, A5
|| CMPLTSP .S1 A5, A9, A2 ; failing instruction
|| LDW .D1T1 *++A0,A9
|| SHR .S2 B4, 14, B8

The failure occurs on CMPLTSP.S1, because the .S1 FP unit is still busy executing the false floating point
instruction triggered by the SHR.L1 executed previously. Internal reference number 5.

WORKAROUND: Ensure that the above three forms of .S unit integer operations (SHR, CLR, EXT) are
followed by any other .S unit integer operation BEFORE executing an .S unit floating-point operation on
that particular .S unit. Note that a NOP instruction does not count as a non-SHR/CLR/EXT instruction.

Problem 0.0.12 CPU: MPYSP/MPYDP underflow failure

In some cases the floating point .M unit produces an incorrect destination result for MPYSP and MPYDP
instructions which underflow.

If each of the following conditions is true, an MPYSP or MPYDP instruction may deliver an incorrect
destination result:

(1) The expected result of an MPYSP or MPYDP instruction underflows.
(2) The expected destination result is +/-SFPN.

The .M unit incorrectly produces an exponent equal to Emax instead of the expected Emin. The fraction,
sign, and UNDER status bits are correct. If the instruction underflows and should produce a destination
result of +/-0 instead of +/-SFPN, then the result produced is correct. Internal reference number 8.

WORKAROUND: Do not use MPYSP or MPYDP for numbers that may generate an underflow.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

12

Problem 0.0.13 CPU: DPSP underflow failure

In some cases the floating point .L unit produces an incorrect result for DPSP instructions which
underflow. Internal reference number 6, 10.

CASE1: If each of the four following conditions is true, a DPSP instruction may deliver an incorrect
destination result and incorrect INEX and UNDER status bit (in the Floating-Point Multiplier Configuration
Register) results:

(1) the expected result underflows
(2) the intermediate result fraction is incremented due to rounding
(3) the pre-rounded intermediate result exponent is non-zero
(4) Rmode is not 01 (truncate)

An example code/data sequence that will generate this error is:

 MVK 0x17373ff5, A8
 MVKH 0x17373ff5, A8
 MVK 0x2f35e46b, A9
 MVKH 0x2f35e46b, A9
 NOP
 NOP
 NOP
 NOP
 DPSP .L1 A9:A8, A5 ;A5 = 39af2359 (should be 00000000)
 NOP

CASE 2: If each of the four following conditions is true, a DPSP instruction will deliver an incorrect
destination result and incorrect UNDER and OVER status bit results:

(1) The expected result underflows.
(2) The intermediate result fraction is incremented due to rounding.
(3) Rounding causes a carry out of the incremented intermediate result fraction.
(4) The intermediate result exponent (calculated as the source operand’s biased exponent minus 0x380)

has a value of ‘1111111x’ (in binary).

The delivered result incorrectly reflects an overflow condition, and not an underflow condition as expected.

Example

Before instruction: Round mode = 0 (round toward nearest even integer)
 A1:A0 = 07ffffff ff800000

Failing instruction: DPSP A1:A0, A2
Incorrect result: A2 = 0x7f800000 with OVER and INEX

(Expected A2 = 0x00000000 with UNDER and INEX)

WORKAROUND: If conversion results may underflow, disable rounding mode by setting Rmode = 01
(truncate). Do not use DPSP if the above conditions are true.

Problem 0.0.14 CPU: DPTRUNC/DPINT overflow failure

In some cases the floating point .L unit produces an incorrect result for DPINT and DPTRUNC instructions
which overflow. Internal reference number 9.

If each of the three following conditions is true then a DPINT or DPTRUNC instruction may deliver an
incorrect destination result and incorrect INEX and OVER status bit results:

(1) The source operand has a negative sign.
(2) The source operand has a biased exponent equal to 1055 (0x41f) causing the expected result to

overflow.
(3) The intermediate result fraction is not rounded (DPTRUNC always meets this condition).
(4) Rmode=10 (round up) for DPINT instruction. This is irrelevant for DPTRUNC instruction.

TMS320C6701 Silicon Errata

© Texas Instruments 18 January, 2000

Redistribution or alteration not permitted.

13

Example 1

Before instruction: A1:A0 = 0xc1f232bf 7321a000
Failing instruction: DPTRUNC .L1 A1:A0, A2
Incorrect result: A2 = 0xdcd408ce (should be A2 = 0x80000000)

Example 2

Before instruction: FADCR = 0x00000400
 A1:A0 = 0xc1f4775a 6d3fc000

Failing instruction: DPINT .L1 A1:A0, A2
Incorrect result: A2 = 0xb88a592d (should be A2 = 0x80000000)

WORKAROUND: Do not use DPINT or DPTRUNC if the above four conditions are true.

Problem 0.0.15 CPU: L-unit floating point instructions failed to execute after ADDDP/SUBDP re-
execution

The floating point .L unit incorrectly interprets an integer instruction and as a result re-executes a
preceding double precision floating point instruction, causing a subsequent floating point instruction to fail.

If the following sequence occurs:

(1) an ADDDP or SUBDP is executed on an .L unit.
(2) 2 execute packets later, any of the following integer .L unit instructions is executed in the SAME .L

unit: AND, OR, LMBD, NORM, CMPLT, SADD, CMPEQ, or ABS. (See “instr X” in the example
below.)

(3) 2 execute packets later after (2), a non-ADDDP/SUBDP floating point instruction is executed in the
SAME .L unit. (See “failing instruction” in the example below.)

Then the final floating point instruction will fail to execute correctly. An example of this failure is shown
below:

SUBDP .L1 A13:A12, A9:A8, A3:A2

NOP

AND .L1 6, A8, A5 ; instr X
|| STW .D1 A2, *A15++
|| MV .S2X A3, B3

AND .L1 A9, A12, A6 ; instr Y
|| STW .D1 A4, *A15++
|| MV .S2X A5, B5

|| STW .D2 B3, *B15++
 SPINT .L1 A8, A4 ; failing instruction

In the above code sequence, instr X must be one of the previously defined eight integer .L unit instructions
for the failure to occur, instr Y can be any .L unit instruction. Any number of X/Y instr pairs can exist
between the SUBDP and SPINT. Internal reference number 7.

WORKAROUND: Insert an additional NOP between the SUBDP and instr X.

	Cover Page
	Table of Contents
	CHAPTER 1 Introduction
	A Note about this Manual

	CHAPTER 2 Installation
	Host Hardware Requirements
	Software Installation
	Begin Installation
	Installation Instructions
	JTAG Debugger Driver Installation
	TABLE 1. PCI Debugger Package Contents
	TABLE 2. ISA Debugger Package Contents

	Code Composer Studio Installation
	Hasp Key Installation
	End Of Installation

	Hardware Installation
	JTAG Emulator Hardware Installation
	FIGURE 1.� Pod Based Emulator Switch/Jumper Positions
	TABLE 3. Pod-Based Emulator Card I/O Address Switch Settings

	DSP Board Installation
	FIGURE 2.� Hasp Key

	Testing the Development Package Installation
	Configuring the Applets within the Development Package
	TABLE 4. Host Support Applications
	FIGURE 3.� .INI File Parameters

	Running the "JTAG Diagnostic" Utility
	Running an Example Program using TERMINAL
	Running the "Scope"
	Testing the Code Composer Debugger

	Troubleshooting Installation Problems
	Most Commonly Asked Questions
	Code Composer Studio Troubleshooting
	Verify Environment Variables

	Multiple Board Support
	Uninstall Process
	Windows 95/Windows 98 Uninstallation
	Windows NT Uninstallation

	CHAPTER 3 Integrated Development Environment
	The Texas Instruments C Compiler Toolset
	C Compiler Toolset Usage

	Code Composer Studio
	Editor
	Debugger

	CHAPTER 4 Support Applets
	The Terminal Emulator
	FIGURE 4.� Terminal Emulator Applet
	FIGURE 5.� Terminal Emulator File Menu
	FIGURE 6.� Diagnostic Received when Target DSP is Halted.
	FIGURE 7.� Terminal Emulator Plot Menu Dialog Box.
	FIGURE 8.� Terminal Emulator Window Menu

	The COFF File Downloader
	FIGURE 9.� The Coff File Downloader Applet

	The COFF File Dump Utility
	FIGURE 10.� The COFF Dump Utility
	FIGURE 11.� COFF Dump Utility Output.

	CHAPTER 5 Developing Target Code
	Introduction
	Components of Target Code (.c, .asm, .cmd)

	Edit-Compile-Test Cycle using Code Composer Studio
	A Simple Code Composer Studio Project
	FIGURE 12.� Creating a New Project in Code Composer Studio
	FIGURE 13.� Adding Files to a Code Composer Studio Project
	FIGURE 14.� Code Composer Studio Project Window.
	Build Options (M62, Q62, SBC62 Boards)
	FIGURE 15.� Code Composer Studio Compiler Build Options
	FIGURE 16.� Code Composer Studio Assembler Build Options
	FIGURE 17.� Code Composer Studio Linker Build Options
	FIGURE 18.� Code Composer Studio Build Results Window

	Build Options (M67, Q67, SBC67 Boards)
	FIGURE 19.� Code Composer Studio Compiler Build Options
	FIGURE 20.� Code Composer Studio Assembler Build Options
	FIGURE 21.� Code Composer Studio Linker Build Options
	FIGURE 22.� Code Composer Studio Build Results Window

	Automatic makefile creation
	Rebuilding a Project
	Running the Target Executable

	Anatomy of a Target Program
	Use of Library Code
	Compiling/Assembling/Linking Outside Code Composer Studio

	The Next Step: Developing Custom Code

	CHAPTER 6 Developing Host Code
	Dynamic Link Library
	Sample Host Programs
	The XRPT Example

	CHAPTER 7 Creating Target Software
	C Code Development
	C Compiler
	C Library Reference
	M62 Zuma Toolset Libraries
	TABLE 5. Zuma Toolset Source Directories
	TABLE 6. Zuma Toolset Support Subdirectories
	TABLE 7. Texas Instruments Standard Library Functions

	M62 Hardware Interaction
	TABLE 8. M62 External Peripheral Memory Map

	Digital Input/Output
	TABLE 9. Digital I/O Access Memory Location
	TABLE 10. Table 17: Digital I/O Direction Configuration
	TABLE 11. Digital I/O Latch Configuration
	TABLE 12. Digital I/O Library Functions

	Timers
	TABLE 13. C Language Timer Functions
	TABLE 14. STDIO Driver Functions

	Example Target Programs for the M62
	HELLO
	TEST

	CHAPTER 8 Target DSP Peripheral Libraries
	CHAPTER 9 Host DLL Reference
	TABLE 15. Generic DLL Function List

	CHAPTER 10 DOS Environment Requirements
	TABLE 16. Required disk directory structure for II development tools.

	CHAPTER 11 M62/cM62 Hardware
	M62/cM62 Hardware Functions
	FIGURE 23.� M62/cM62 Block Diagram

	Memory Map
	TABLE 17. M62 External Memory Map

	M62 Hardware Initialization Requirements
	TABLE 18. M62 Bus Control Register Initialization Values

	External Memory
	M62 OMNIBUS
	TABLE 19. M62 I/O Bus Memory Mapping
	M62 OMNIBUS Memory Mapping
	OMNIBUS Power
	TABLE 20. I/O Bus Power Ratings

	FIFOPort I/O Expansion
	FIGURE 24.� FIFOPort Block Diagram
	Transmitting and Receiving FIFOPort Data
	Monitoring FIFO Status
	FIGURE 25.� Receive FIFOPort Level Status Register
	TABLE 21. Receive FIFOPort Level Status Register Definition
	FIGURE 26.� Transmit FIFOPort Level Status Register

	TABLE 22. Transmit FIFOPort Level Status Register Definition

	FIFOPort Reset
	FIFOPort Enable
	Controlling the FIFOPort Programmable Almost-full Flag
	Timer I/O and the FIFOPort
	Designing External Hardware for use with the FIFOPort
	FIGURE 27.� FIFOPort Daughterboard Mechanical Dimensions

	FIFOPort Timing
	FIGURE 28.� FIFOPort Timing
	TABLE 23. FIFOPort Timing Parameters

	Serial Ports
	FIGURE 29.� Serial Port Daughterboard Mechanical Dimensions

	Timers
	On-chip Timers
	16-bit Timers
	TABLE 24. External Timer Control Registers

	AD9850 Direct Digital Synthesizer
	TABLE 25. AD9850 Control Registers

	Digital I/O
	TABLE 26. Digital I/O Control Registers
	Digital I/O Timing
	FIGURE 30.� Digital I/O Port Timing
	TABLE 27. Digital I/O Port Timing Parameters

	External Mux Control
	TABLE 28. TERM Function Memory Map

	Interrupts
	TABLE 29. External Interrupt Input Control Registers
	TABLE 30. Interrupt Source 4 and 5 Select Register Values
	TABLE 31. Interrupt Source 6 and 7 Select Register Values

	JTAG Test Bus
	M62 PCI Bus Features
	PCI Bus I/O and Memory Map
	TABLE 32. HPI Port PCI Bus Mapping

	M62 Bootstrapping

	CHAPTER 12 Appendices
	Board Layout
	Connector pinouts
	JP17, JP18, JP21, JP22, P1, P2 - OMNIBUS I/O Connectors (M62 only)
	TABLE 33. OMNIBUS I/O Connector Pinouts

	JP17, JP18, JP21, JP22, JP32, JP33 - OMNIBUS I/O Connectors (cM62 only)
	TABLE 34. OMNIBUS I/O Connector Pinouts
	FIGURE 31.� OMNIBUS I/O Connector Pin Configuration

	JP19, 20, 23, 24, 34, 35 - OMNIBUS Bus Connectors
	TABLE 35. I/O Module Bus Connectors
	TABLE 36. I/O Module Bus Connectors

	JP14 – Digital I/O Connector
	TABLE 37. Digital I/O Connector

	JP31 – Miscellaneous Digital I/O Connector
	TABLE 38. Miscellaneous Digital I/O Connector

	JP15, JP16 – Processor Serial Port Connectors
	TABLE 39. Processor Serial Port Connector

	JP11 – JTAG Debugger Connector
	TABLE 40. JTAG Debugger Connector

	JP30 – FIFOPort Connector
	TABLE 41. FIFOPort Connector

	TMS320C6201 Limitations and Errata
	Processor Speed Limitations and External Memory
	Texas Instruments Device Errata

